

The Role of the Government Pension Fund Global (GPFG) in the new model

Ivan Frankovic ivan.frankovic@fin.dep.no

November 28th, 2018

Outline

- Background and motivation
- Conceptional and technical limitations related to permanently increasing the level of oil fund withdrawals/take-out rate
- Costs of temporarily increasing oil fund withdrawals/the take-out rate

Background and Motivation

Motivation

- A model for fiscal policy analysis in Norway should describe the tradeoffs involved in using more oil money / increasing the take-out rate
- Benefits of using more oil money obvious... costs less so
- Some options:
 - 1. "Manna from heaven" \rightarrow No costs
 - 2. Ad-hoc additions (e.g. effects on risk premia) \rightarrow lack of empirical evidence
 - 3. Include a simple model of the oil fund
 - Potential costs related to changes in taxation resulting from increasing oil fund withdrawals/the take-out rate
 - Approach explored in this presentation

Scope of this work

- Modelling the oil fund in the "baseline" model
- Baseline model describes a steady-state world
 - No trend growth in GDP
 - No trend growth in government expenditures
 - All variables in the model converge to a (possibly changing) long-run steady state
- Include a simple model of the oil fund
 - No inflows to the fund → No model of oil production
 - Fund is held in domestic currency → No exchange rate effects
 - Exogenous and constant real rate of return
 - In the long-run the take-out rate from the oil fund must equal its real rate of return \rightarrow ensures fund converges to a (possibly changing) steady-state

The government budget in the current model

Balanced budget:

Tax on returns to bonds

$$T_t$$
 + $OILR_t$ = G_t

Revenue Withdrawals from GPFG Government spending

$$T_{t} = \underbrace{T_{t}^{L} + \underbrace{C_{t}\tau_{t}^{C}}_{t} + \underbrace{(w_{t}N_{t}^{P} + w_{t}^{G}N_{t}^{G})(\tau_{t}^{OI} + \tau_{t}^{BT} + \tau_{t}^{SS,H} + \tau_{t}^{SS,H} + \tau_{t}^{SS,F})}_{\text{Lump-sum tax Consumption tax}} G_{t} = \underbrace{P_{h,t}C_{t}^{G}}_{\text{Government purchases}} + \underbrace{P_{t}^{i}I_{t}^{G}}_{\text{Government investment}} + \underbrace{UB_{t}(L_{t} - N_{t})}_{\text{Unemployment benefits}} + \underbrace{TR_{t}}_{\text{Capital income tax - allowances}} + \underbrace{P_{t}^{i}I_{t}^{G}}_{\text{Corporate tax}} + \underbrace{UB_{t}(L_{t} - N_{t})}_{\text{Dividend tax}} + \underbrace{DIV_{t}\tau_{t}^{OI}}_{\text{Dividend tax}} + \underbrace{TR_{t}}_{\text{Lump-sum transfers}} + \underbrace{W_{t}^{G}N_{t}^{G}(1 + \tau_{t}^{SS,F})}_{\text{Government wage bill}} + \underbrace{DIt_{t}}_{\text{Debt interest payments}} + \underbrace{P_{t}^{P_{t-1}}P_{t}^{SS,F}}_{\text{Corporate tax}} + \underbrace{P_{t}^{P_{t-1}}P_{t}^{SS,F}}_{\text{Corporate tax}} + \underbrace{P_{t}^{OI}P_{t}^{OI}}_{\text{Corporate tax}} + \underbrace{P_{$$

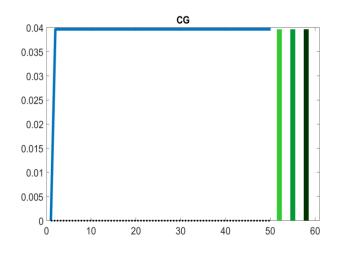
A simple theory of the fund

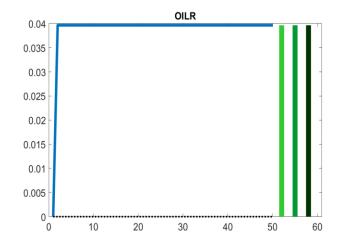
• Let GPF be the real value of the fund with an exogenous and constant rate of return $\overline{r^F}$:

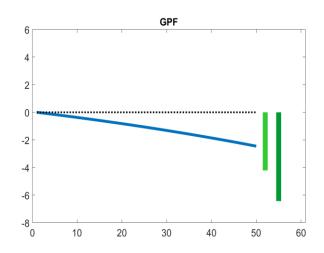
$$GPF_t = (1 + \overline{r^F})GPF_{t-1} - OILR_t$$

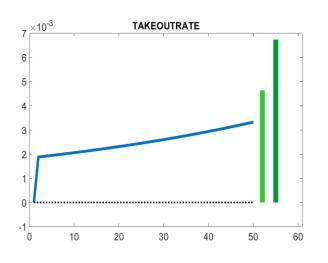
• In steady state:

$$\overline{TOR}:=\overline{OILR}/\overline{GPF}=\overline{r^F}$$
Take-out rate SS OILR divided by SS GPF Rate of return on the fund

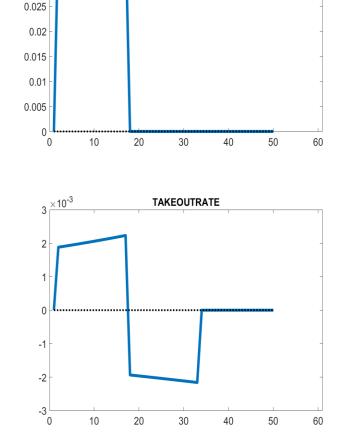

 If the take-out rate in the long-run is not equal to the rate of return, the value of the fund does not stabilize



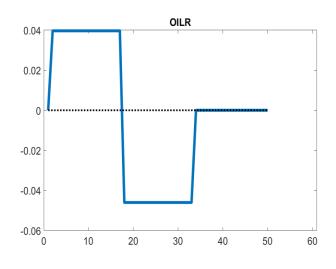

Conceptional and technical limitations related to permanently increasing the level of oil fund withdrawals/take-out rate

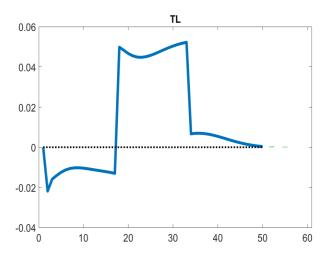


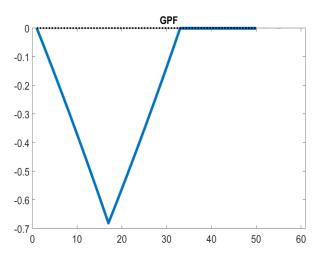
1) Permanent increase in government purchases financed by fund withdrawals (OILR)


 Permanent increase in OILR/take-out rate is inconsistent with a stable value of the oil fund (within the steady-state world described by the model)

Costs of temporarily increasing oil fund withdrawals/the take-out rate

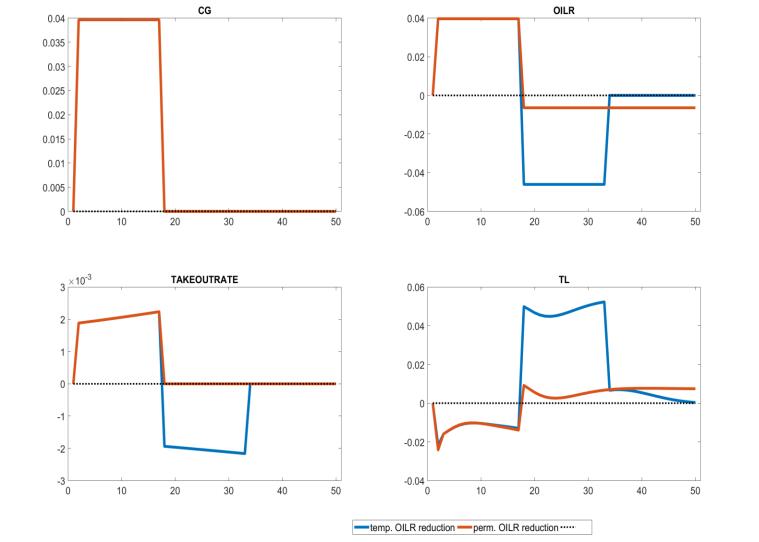

2 a) Temporary increase in government purchases; temporary increase and subsequent decrease in the take-out rate

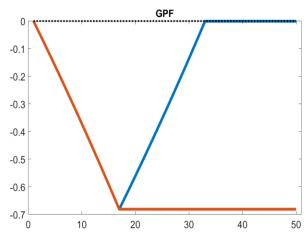



CG

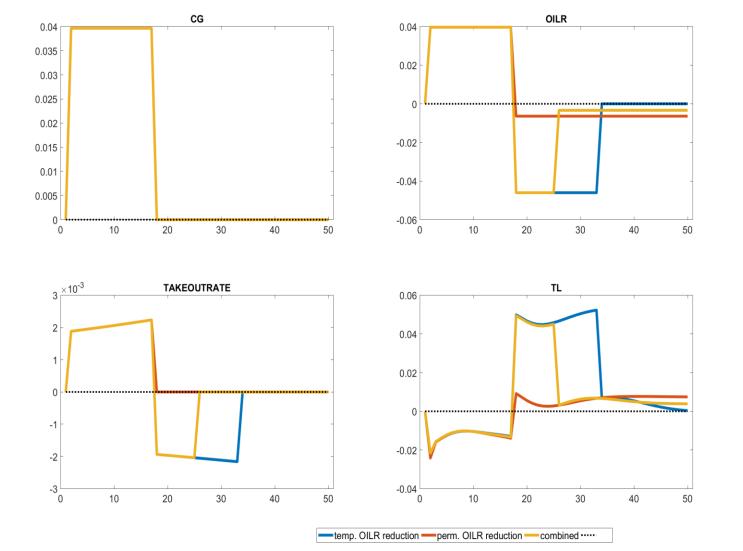
0.035

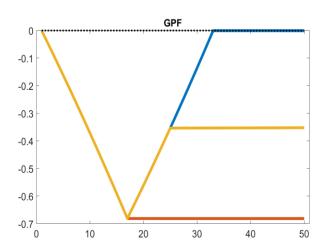
0.03





- Decrease in OILR/take-out rate sufficient to bring fund back to its initial value
- Lump-sum taxes required to balance budget initially fall due to fiscal stimulus, but increases when OILR falls
- Consistent with a stable value of the oil fund


2 b) Temporary increase in government purchases; temporary increase in the take-out rate



- Temporary increase in takeout rate
- Entails a permanently reduction in OILR and the value of the oil fund
- Requires a permanent increase in taxation (or cut in spending)
- Consistent with a stable value of the oil fund

2 c) Temporary increase in government purchases; temporary increase and partial decrease in the take-out rate

- Decrease in OILR/take-out rate insufficient to bring fund back to its original value
- Still consistent with a stable value of the oil fund

Conclusion

Conclusions

- A permanent increase in oil fund withdrawals/the take-out rate is inconsistent with a stable value of the oil fund and the steadystate world described by the model
- To stabilize the value of the oil fund after a temporary increase in oil fund withdrawals/the take-out rate, it is necessary and sufficient that the take-out rate returns to its initial level
- A temporary increase in oil fund withdrawals/take-out rate entails costs due to higher taxation/lower spending in the future
- The level of the oil fund following an increase in withdrawals/take-out rate depends on how much/how long the take-out rate undershoots its initial level

