

Global Resource Use and Decoupling

Edgar G. Hertwich

Director, Industrial Ecology Programme, NTNU Leader, WG Impacts, International Resource Panel www.ntnu.edu/indecol

www.unep.org/resourcepanel

The inconvenient truth (about resources)

____Recycling flows

- Emissions (mainly CO₂)
- Flows of energy carriers (biomass and fossil fuels)
- Other material flows (ores, construction minerals)

Fischer-Kowalski, 2011

'Hidden' resources flows are large and cause significant environmental impacts...

> ...and the **receiving environments for emissions** are smaller than some might think.

The promise of resource efficiency

There may be ways **decouple environmental impacts** and resource use from **economic growth**...

... while **avoiding burden shifting** between countries, generations, **and trade-offs** between impact categories and life cycle stages.

International Resource Panel Structure

Steering Committee – a broad partnership

- Government and IGOs: Canada, China, Chile, <u>Denmark</u>, <u>EC</u>, Egypt, <u>Finland</u>, France, Germany, Hungary, Indonesia, India, Italy, Japan, Kazakhstan, Mexico, Netherlands, <u>Norway</u>, Russia, South Africa, Switzerland, Tanzania and USA, OECD
- Civil Society Organisations: ICSU, IUCN, and WBCSD
- Observers: UK

Achievements

Five Assessment Reports launched

Oct 2009: Assessing Biofuels May 2010: Metals Stocks in Society June 2010: Priority Products and Materials May 2011: Decoupling May 2011: Recycling Rates of Metals

Source: Krausmann *et al.*, 2009; based on Sec Database "Growth in global materials use, GDP and population during the 20th century", Version 1.0 (June 2009): http://uni-klu.ac.at/socec/inhalt/3133.htm)

GDP per capita Constant year 2000 US\$

Increasing trend holds across expenditure categories

PRIORITY

ILCTS AND

Carbon footprint also increases with income

Cross-sectional analysis of carbon footprints: 0<ε<1

	GHG footprint elastic ity
Construction	0.74
Shelter	0.65
Food	0.29
Clothing	0.79
Manufactures	0.88
Mobility	0.83
Service	0.55
Trade	0.88

Elasticity of 0.73 implies that if income increases with 100%, GHG emissions increase with 73% income groups also shows relative decoupling

Key empirical finding: relative but not absolute decoupling

- We see a relative decoupling: resource use grows, but slower than GDP
- Many studies support this finding: across countries, within countries, longitudinal and cross sectional studies
- There is no demonstration of absolute decoupling: growth has always required increased resource inputs

Source: World Bank Commodity Price Data (Pink Sheet), historical price data, available from http://blogs.worldbank.org/prospects/globalcommodity-watch-march-2011

Decoupling of cereal production from land area – but at the expense of more fertilizer use

Note: Global growth in the production of cereals since 1961 almost exclusively depended on intensification (nitrogen input, tractors, yields and many other factors not shown on this graph), whereas the expansion of harvested area played an insignificant role. Source: UNEP GEO Portal, as compiled from FAOSTAT database, Food and Agriculture Organization of the United Nations (FAO), http://geodata.grid.unep.ch

Key findings on metals: Opportunities for recycling

1

н	The majority of													Не			
3 Li Lithium	4 Be Beryllium		specialty metals have recycling rates lower									5 B Boron	∘ C	7 N	8 0	, F	10 Ne
יי Na	12 Mg Magne- sium		than 1%!										¹⁴ Si	15 P	16 S	17 Cl	18 Ar
19 K	20	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manga- neso	26 Fe Iron	27 Co Gobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Ga Gattium	32 Ge Germani- um	33 As Arsenic	34 Se Selonium	35 Br	36 Kr
37	38	39				43	46	45			47	49		51	52	53	54
Rb	Sr Strontium	Y Yitrium	Zr Zirconium	Nb Niobium	Mo Molybde- num	Тс	Ru Rotherson	Rh Rhodium	Pd Paltadium	Ag Silver	Cd Connector	In Indium	Sn Tin	Sb Antimony	Te Tetturium	I.	Хе
55	56	57-71	72		14	75	76	77			80	81		83		85	86
Cs	Ba Barium		Hf Hafnium	Ta Tantalum	W Tangatan	Re Rhenium	Os ^{Osmium}	lr Iridium	Pt Platinum	Au Gold	Hg Mercury	Tl Thallium	Pb Lead	Bi Bismut	Po	At	Rn
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Sg	Hs	Mt	Ds	Rg	Uub	Uut	Uug	Uup	Uuh	Uus	Uuo

> 50 %	57 10	58	59	60	61	62	63	64	65	66	67	68	69	78	71
> 25–50 %	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
> 10–25 %	Lantha- num	Cerium.	Praseo- dymium	Neodymi- um		Samarium		um		Dysprosi- um					Lutetium
1-10%	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
< 1 %	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Rethinking growth to include materials might help

Key findings

- At present, consumption growth outstrips decoupling, leading to an increase in absolute resource consumption
- There are substantial opportunities for increases in resource efficiency
- There is often a trade-off between different resources and environmental impacts => Long-term efficiency limits?
- Focus on decoupling well-being from resource consumption