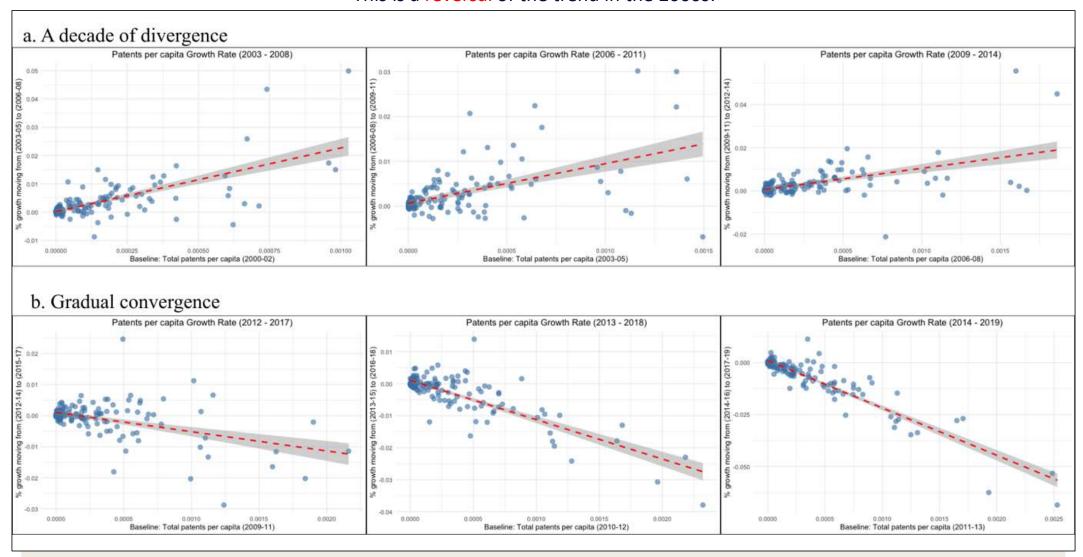


Regional innovation in Europe is converging

Lowest performing regions are slowly catching up to top performing regions

Figure 5: Convergence in 2000-2022 regional innovation performance



Regional Innovation Index

- Patent
- Scientific Publications
- R&D Investments
- Educational Statistics
- Labour productivity
- Exports
- and more...

Regional Innovation Scoreboard - 2025

This is a reversal of the trend in the 2000s:

Source: Kharel, Fitjar and Rodríguez-Pose (2025) – working paper based on data from European Patent Office (EPO)

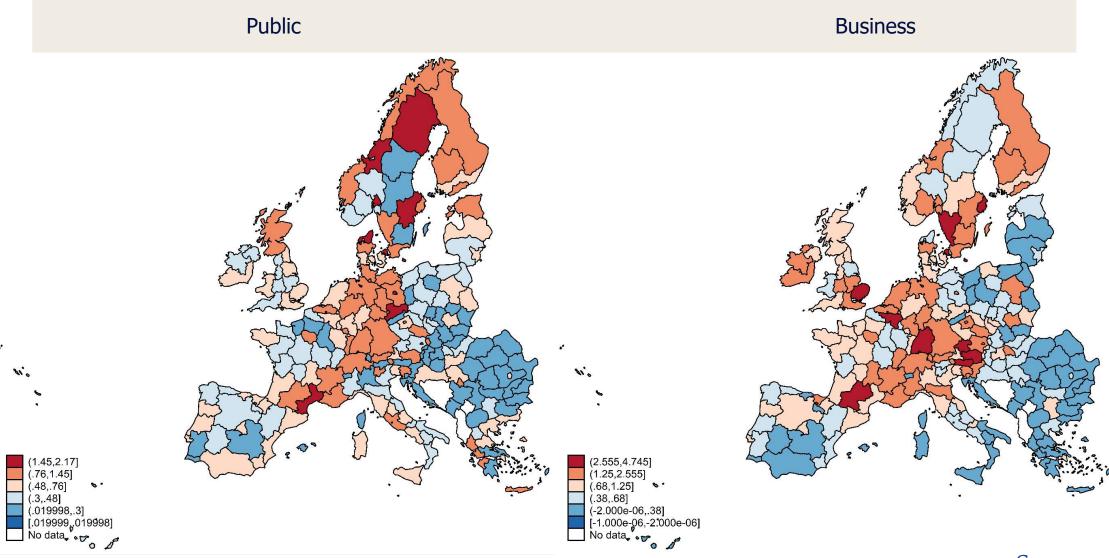
Why are innovation levels converging?

Because of public policy to even out disparities created by the market?

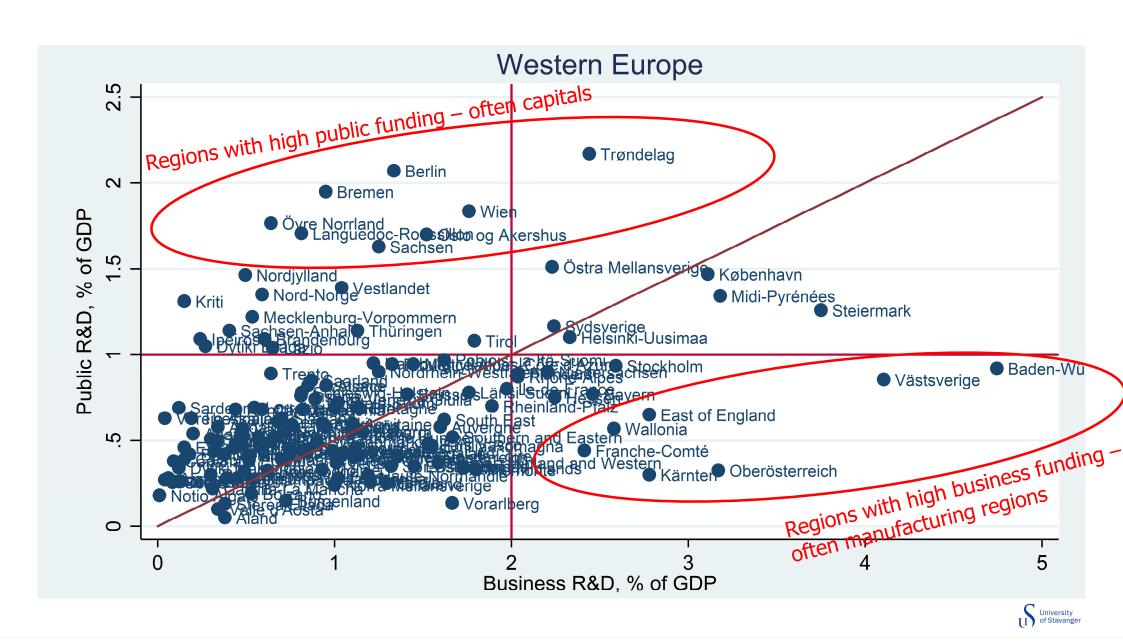
Cohesion Policy has

- modernised infrastructure
- fostered innovation
- helped shape a more dynamic and competitive Europe
- driven catch-up growth, particularly in post-2004 Member States

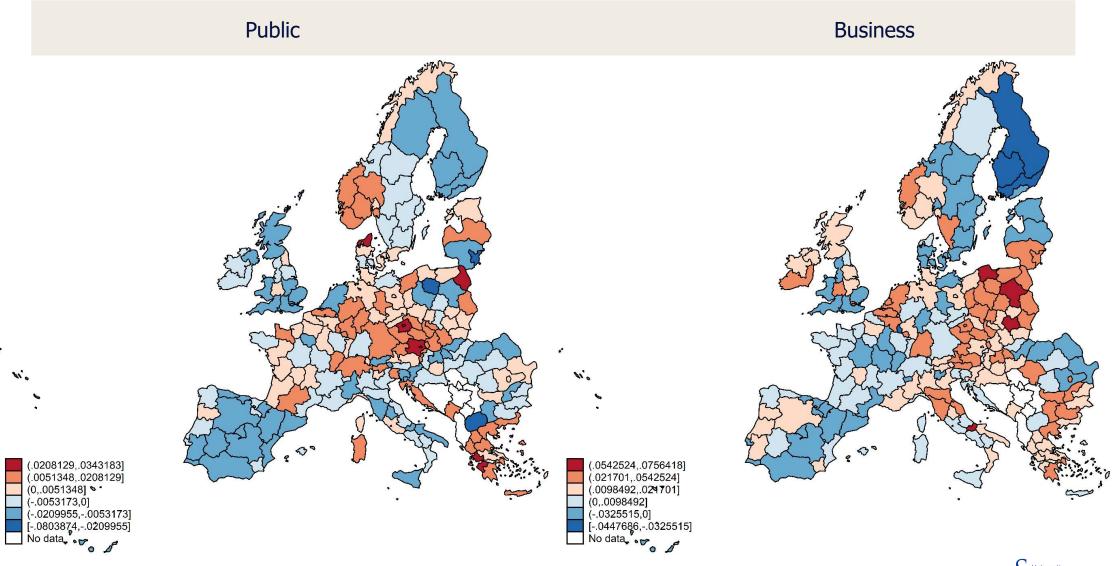
(Rodríguez-Pose, 2025)

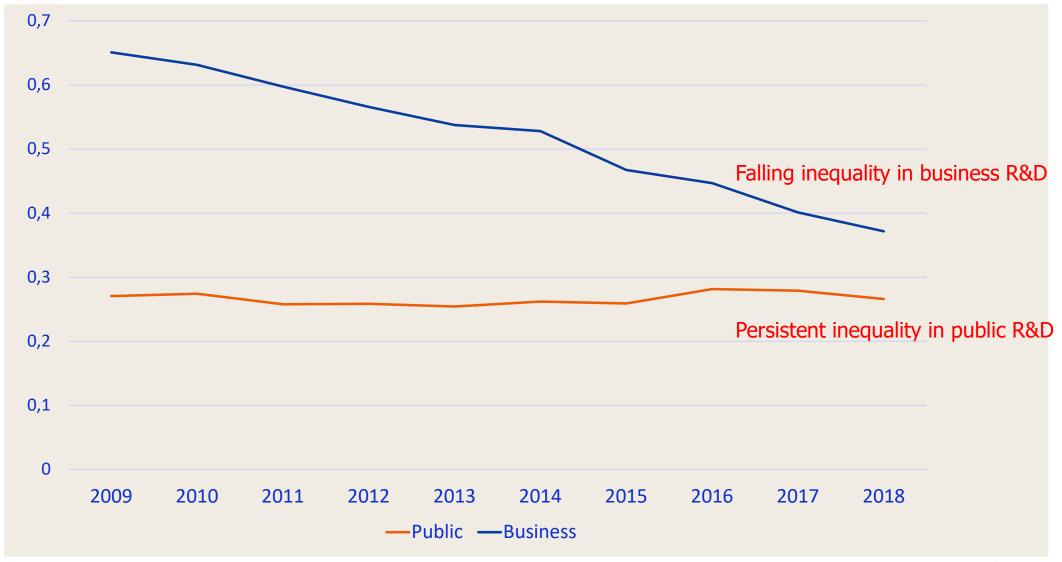

... but this partly counteracts the centralising effects of other public policies – not just market-created disparities

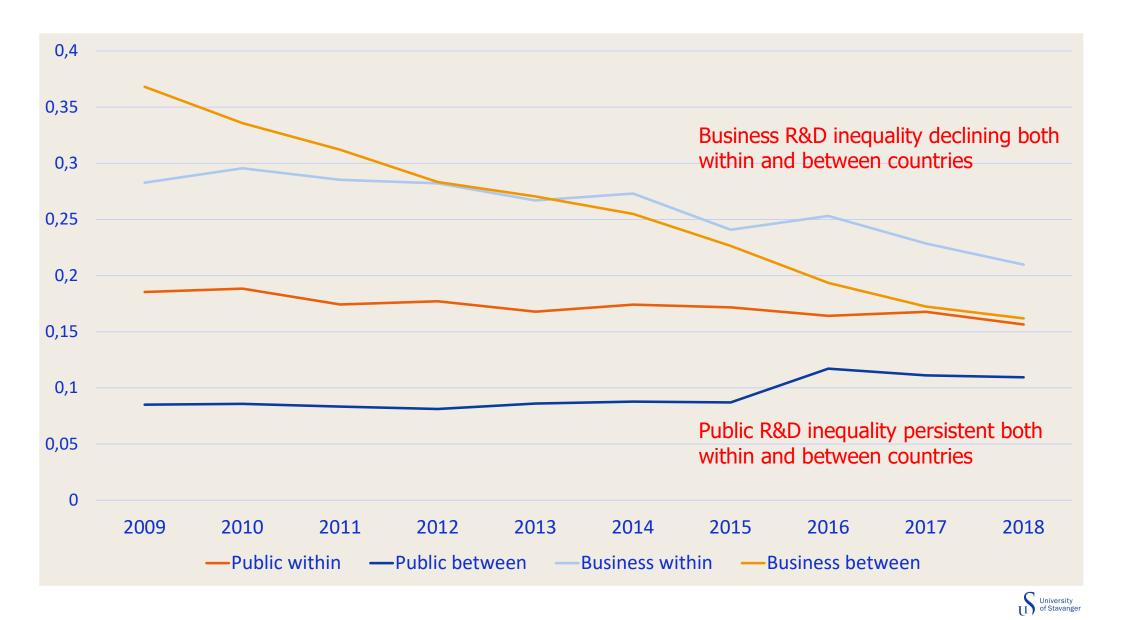
... and these effects may yet become stronger with shifting policy priorities in the years to come



R&D funding, % of GDP by region, 2018




Source: Fitjar RD (2025): Does public R&D funding reinforce regional disparities? *Research Policy* 54:105312



R&D funding as % of GDP, average annual growth 2009-2018

What's Puzzling

Convergence is happening

despite public R&D investments remaining concentrated in core regions

Do we need to look beyond the region itself?

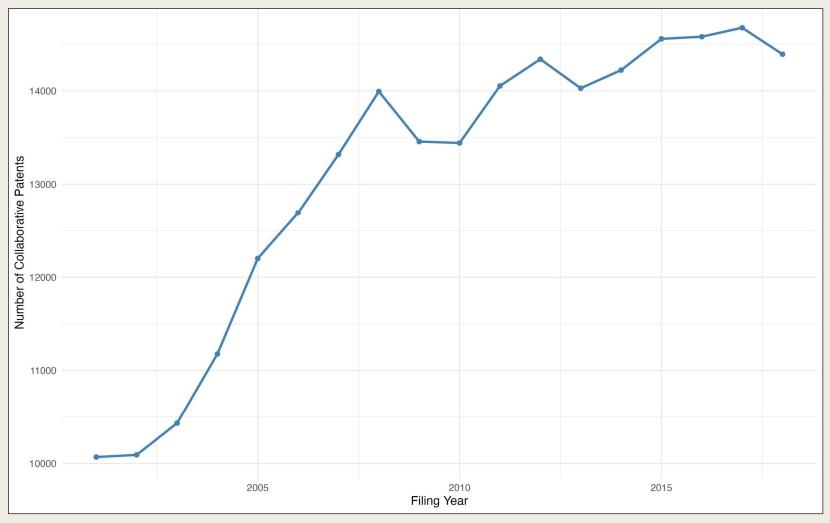
Dominant theories emphasize local resources:

- Agglomeration economies
- Local knowledge spillovers
- and typically focuses on core regions

Increasing research on innovation in peripheral regions, emphasizing

- Knowledge spillovers do not require (permanent) geographical proximity
- Other dimensions of proximity are more important
- Temporary proximity may be sufficient
- Firms in peripheral regions need to connect through dedicated knowledge pipelines
- There are benefits to peripheral location: Secrecy, uniqueness, quietness, multiplex interactions, etc.

Connectivity as a resource for peripheral regions


- Inter-regional linkages and knowledge networks can enhance innovation in less innovative regions (Eder, 2019; Owen-Smith and Powell, 2004)
- External knowledge pipelines enable purpose-built interactions among innovation actors in distant locations (Bathelt et al., 2004)
- Access to novel ideas and technologies from outside would amplify the value of their existing knowledge (Feldman and Kogler, 2010)
- Less innovative regions can compensate for the absence of geographical proximity among innovation actors (Boschma, 2005)

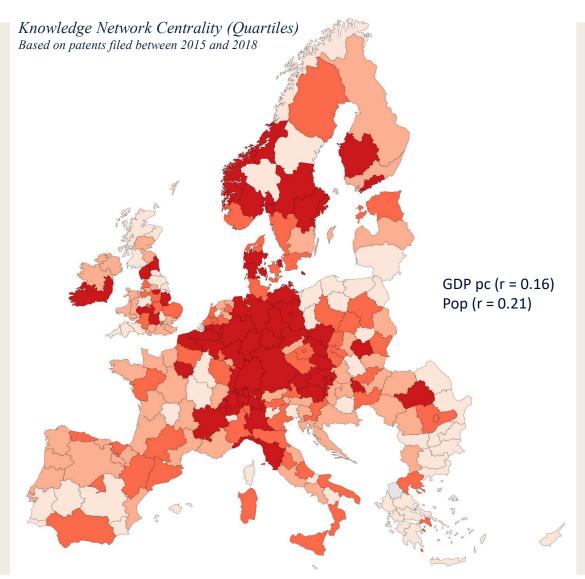
Connectivity – empirical studies

- Norway Firms engaging in extra-regional collaborations introduce more radical innovations than those relying solely on local partnerships. Collaborations are particularly beneficial in regions with weak innovation infrastructures.
 - Fitjar and Rodríguez-Pose, (2011, 2014, 2020) and Fitjar and Huber (2015)
- **Sweden** External and mostly international linkages compensate for a lack of local innovation spillovers *Grillitsch and Nilsson (2015) and Dubois (2015)*
- Austria Long-standing nonlocal formal connections to universities, customers and suppliers to ensure inflow of knowledge (Eder and Trippl, 2019)
- **Switzerland** Firms seek external knowledge beyond the region through e.g. international recruitment, clients, universities, and conferences (*Meili and Shearmur*, 2019)
- Canada Most innovative service firms located furthest away from their users (Shearmur and Doloreux, 2015).
- **Chile** Chilean wine cluster (Giuliani and Bell, 2005)
- **England** SMEs in the periphery of England value knowledge networks from within and beyond their region (Huggins and Johnston, 2009)
- Asian lead firms technological upgrading and innovation emerging out of Asian lead firms

Connectivity, as such, has been studied as a relatively **exogenous mechanism** helping less innovative regions remain innovative and embedded in the knowledge networks.

European Patents with Inter-regional Co-inventorship

Source: Authors' elaboration based on data from European Patent Office (EPO)


Connectivity

In theory: the extent to which a region is embedded in the global knowledge network

In practice:

calculated as the sum of the eigenvector centrality values of externally collaborating patent inventors based in each European region

Resulting in a 'Knowledge Network Centrality' indicator

Source: Network based calculations by the authors based on data from EPO

More connected regions have higher rates of patent growth

- even if we hold R&D investments constant

Table 1: R&D and Connectivity for regions in the EU

	Dependent variable:						
	Patent Growth (3-year)						
	(1)	(2)	(3)	(4)	(5)		
Baseline Patents(ln)	-7.372***	-8.924***	-9.668***	-11.270***	-10.914***		
	(1.224)	(1.492)	(1.917)	(2.545)	(2.365)		
Total R&D pc (ln)		0.001***		0.001**	0.003***		
		(0.001)		(0.001)	(0.001)		
Connectivity (ln)			0.001**	0.001**	0.001**		
			(0.001)	(0.001)	(0.001)		
Population (ln)		_			-0.001*		
					(0.0003)		
Education (%)					-0.0002		
					(0.0002)		
GDP pc (ln)					-0.001		
					(0.002)		
Manu Emp pc (ln)					0.0003		
					(0.001)		
Constant	0.011***	0.003	0.012***	0.005**	0.019		
	(0.001)	(0.002)	(0.002)	(0.002)	(0.013)		
Year FE	Yes	Yes	Yes	Yes	Yes		
Country FE	Yes	Yes	Yes	Yes	Yes		
Observations	684	684	684	684	684		
\mathbb{R}^2	0.237	0.247	0.248	0.259	0.266		
Adjusted R ²	0.210	0.220	0.220	0.230	0.234		
Note:		*p**p***p<0.01					

Table 2A: For Regions with above median connectivity

	Dep	Dependent variable:				
	Pater	Patent Growth (3-year)				
	(1)	(2)	(3)			
Baseline Patents(ln)	-6.939***	-9.323***	-9.007***			
	(1.246)	(1.838)	(1.982)			
Total R&D pc (ln)	Г	0.003**	0.004***			
		(0.001)	(0.001)			
Population (ln)	_		-0.00003			
			(0.001)			
Education (%)			-0.0002			
			(0.0002)			
GDP pc (ln)			-0.002			
• • •			(0.002)			
Manu Emp pc (ln)			0.0003			
* * * * /			(0.001)			
Constant	0.012***	-0.003	0.008			
	(0.002)	(0.006)	(0.021)			
Year FE	Yes	Yes	Yes			
Country FE	Yes	Yes	Yes			
Observations	340	340	340			
\mathbb{R}^2	0.336	0.349	0.356			
Adjusted R ²	0.293	0.304	0.302			
Note:	*p**p***p<0.01					

Table 2B: For Regions with below median connectivity

	Dep	Dependent variable:				
	Paten	Patent Growth (3-year)				
	(1)	(2)	(3)			
Baseline Patents(ln)	0.163	-1.142	-1.430			
	(3.880)	(4.100)	(4.336)			
Total R&D pc (ln)		0.001***	0.001*			
		(0.0002)	(0.001)			
Population (ln)			-0.0001			
			(0.0002)			
Education (%)			-0.0001			
			(0.0001)			
GDP pc (ln)			-0.0005			
• • •			(0.001)			
Manu Emp pc (ln)			0.0001			
,			(0.0004)			
Constant	0.008***	0.006*	0.011			
	(0.003)	(0.003)	(0.008)			
Year FE	Yes	Yes	Yes			
Country FE	Yes	Yes	Yes			
Observations	344	344	344			
\mathbb{R}^2	0.264	0.275	0.280			
Adjusted R ²	0.218	0.228	0.223			
Note:		*p**p***p<0.01				
		-				

R&D investments are more effective in more connected regions

Can connectivity explain convergence?

- O Connectivity is stronger between core regions
 - This is what makes them core regions!
- O But connectivity might be more important for peripheral regions
 - Enables access to knowledge sources even from a distance
 - Reduces liability of peripherality
 - Allows smaller regions to "borrow size" from larger ones
- O Increased connectivity brings peripheral regions closer to the core – enhancing their capacity for innovation

Conclusions

- O Convergence in patent rates across European regions
 - Less innovative regions are catching up
- O This is happening despite continued concentration of public R&D funding in the core regions
 - In contrast, business R&D is being diverted to lagging regions
- O Besides R&D investments, connectivity is associated with higher patent growth rates in European regions
- O Inter-regional collaboration for innovation increasing
- O Many studies of peripheral regions highlight connectivity as a way to overcome challenges of peripheral location
- Overall, connectivity seems to be an important driver of innovation – especially for peripheral regions

