
E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

E-vote 2011 

SSA-U Appendix 5  

Testing and Approval 

Project: E-vote 2011 

 

 

 

 

    



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 1 

CONTENT 

1. TEST GUIDELINES 3 

1.1. Introduction 3 

1.2. Scope of each test 3 

1.3. Requirements and criteria for implementation 6 

1.3.1. Start criteria 6 

1.3.2. Requirements for ending the test 6 

1.3.3. Test execution 6 

1.3.4. Classification of findings 6 

1.3.5. Criteria for Acceptance or Rejection 7 

1.3.6. Abandonment 7 

1.3.7. Recurrence 7 

1.4. Test documentation 8 

1.5. Test Plan 8 

1.6. Test log 9 

1.7. Test environment 10 

2. ACCEPTANCE TEST AND APPROVAL PERIOD 10 

2.1. Introduction 10 

2.2. Requirements for execution of acceptance test 10 

2.3. Precondition before installation for acceptance test 11 

2.4. Strategy 11 

2.5. Stop and restart of Acceptance test 11 

2.6. Acceptance of the delivery 11 

2.7. Approval period 12 

2.7.1. Introduction 12 

2.7.2. Final acceptance of the delivery 12 

2.8. Error reporting and management 12 

2.9. Registration of errors 13 

3. TESTING TOOLS AND OTHER SUPPORTING TOOLS 14 

4. QUALITY ASSURANCE, ERROR HANDLING AND CONFIGURATION CONTROL 15 

4.1. Quality Management 15 

4.2. QA Assurance and Control 16 

4.2.1. Implementation 16 

4.2.2. Regression tests 17 

4.2.3. Usability and accessibility testing: 18 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 2 

4.2.4. Security testing 18 

4.2.5. Volume and performance testing 18 

4.3. Releasing 19 

4.4. Configuration Management 21 

4.5. Change Management 21 

4.6. Tools Used 21 

4.6.1. Bug Tracking – Bugzilla 22 

4.6.2. Test Management – Hudson Continuous Integration Server 22 

4.6.3. Build Management – Maven 23 

4.6.4. Configuration/Version  Management - Subversion 25 

4.6.5. Load testing – JMeter 26 

4.6.6. Rational Purify 27 

4.6.7. FindBugs 27 

4.6.8. Cobertura 28 

4.6.9. Checkstyle 29 

4.6.10. Jemmy 30 

4.6.11. WAVE 30 

4.6.12. TAW 30 

4.6.13. W3C Markup Validation Service 31 

4.6.14. Junit 31 

4.6.15. JAWS 32 

4.6.16. Paros 33 

4.6.17. WebScarab 33 

 

 

  



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 3 

1. Test Guidelines 

1.1. Introduction 

This section describes the guidelines for tests of the system delivered.  

 

Detailed test plans for each test cycle will be developed during the project. Each detailed test plan will cover the 

following topics: 

 

• The overall intention for the test. 

• A description of all tests that should be performed. 

• Planning of the tests. 

• How each test should be performed as well as the expected results. 

• Who will participate in the test. 

• How the test results will be logged and how any deviations from the expected result should be handled. 

1.2. Scope of each test 

General 

The purpose of all test activities in the project is to identify as many errors as possible in an efficient manner, as 

early as possible, and within the time that is available. At each level the goal is to correct errors before the next 

type of test is performed. Through these test iterations, an accepted and approved high quality solution willbe 

obtained.  

 

The figure below shows the principle for how testing is conducted in the project with the types of tests to be 

conducted in the project. 

 

 

 

 

 

  



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 4 

The types of tests that will be implemented in the project are listed in the table below. The table shows which 

tests are performed in which phases and who will be responsible for test planning and execution. 

 

Test type Abbreviation Responsible 
Specification 

phase 

Development 

phase 

Acceptance and 

Approval period 

Module- / Unit test MT Vendor  X  

Integration test IT Vendor  X  

System test ST Vendor  X  

Performance test PT Vendor  X  

Deployment and 

Installation test 
DT 

Vendor / 

Hosting 

provider 

 X X 

Acceptance test AT Customer X X X 

Continuous test CT 

Customer / 

Hosting 

provider 

  X 

 

  



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 5 

The table below shows the different areas that are covered in each test: 

 

Characteristic MT 

 

IT ST PT DT AT CT 

Functionality        

Functionality described in the requirement 

specification 
  x   x  

Manual routines   x   x x 

Correctness x x x   x x 

Auditability   x   x  

Security   x   x x 

Interaction with other systems  x x  x x x 

Accessibility    x   x  

Compatibility   x  x x  

Reliability        

Maturity for operations   x x  x x 

Robustness x x x   x x 

Restore after system stop   x   x x 

Stress tolerance   x x  x  

Simultaneity   x x  x  

Availability   x x  x x 

Performance        

Response time for end user functions   x x  x x 

Processing time for heavy batches    x  x  

The usage of machine resources    x  x  

Usage if other type of resources    x  x  

Maintainability        

Analyzable x x x   x x 

Predictable   x x  x x 

Ease of alteration   x   x  

Testability   x   x  

Completeness of documentation   x   x  

Transferable        

Adaptability   x   x  

Ease of installation   x  x x  

Standardizing   x   x x 

        

 

  



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 6 

1.3. Requirements and criteria for implementation 

1.3.1. Start criteria 

Start criteria for all tests are: 

• The test must be properly planned and the test plan must be approved. 

• The previous test level must have been completed.  

• Relevant test data must be available. 

• The test environment must have been established including all interfaces. 

• The resources needed to complete the test must have been allocated. 

 

1.3.2. Requirements for ending the test 

The following general requirements must be met in order to end a test: 

• All test cases and test objects must have been tested and documented, including test results. The term 

test object covers among others requirement, module, interface, function and subsystem depending on 

the level of the test.  

• The predefined criteria for successful test have been met.  

 

1.3.3. Test execution 

The following general requirements apply to the execution of each test cycle: 

• The test must follow the test predefined test descriptions.  

• All test cases must be covered and all findings and results must be properly recorded. 

• All deviations must be located, evaluated and classified. 

 

1.3.4. Classification of findings 

The following categories are used for classification of findings: 

 

Level Category Description 

A Critical error - Error that results in the stoppage of the system, the loss of 

data, or in other functions that are of critical importance to the 

Customer not being delivered or not working as agreed. 

- The documentation being incomplete or misleading, and this 

resulting in the Customer being unable to use the system or 

material parts thereof. 

 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 7 

B Serious error - Error that results in functions of importance to the Customer 

not working as described in the Agreement, and which it is 

time-consuming or costly to avoid. 

- The documentation being incomplete or misleading, and this 

resulting in the Customer being unable to use functions that are 

of importance to the Customer. 

C Less serious 

error 

- Error that results in individual functions not working as 

intended, but which can be avoided with relative ease by the 

Customer. 

- The documentation being incomplete, imprecise or easily 

misunderstood.  

 

 

1.3.5. Criteria for Acceptance or Rejection 

Each test plan shall include precise criteria for acceptance. The criteria should be like: 

 

• All test cases / procedures shall be executed. 

• The number of errors found shall be less than the defined maximum. 

• The last test cycle shall contain no errors in category Critical or Serious. 

 

1.3.6. Abandonment 

A test can be stopped completely: 

• If errorsmake it impossible to finish the execution of a test (e.g. application abortions, data errors). 

• If the number of Critical or Serious errors are so high that there is no point carrying on. 

 

The test can be paused: 

• If there isaheavy backlog in the error corrections thatprevent the test to be performed on the latest 

version of the function/subsystem.  

• If serious deficiencies or errors in the test basis or test data is discovered. 

• If an error is found that is critical  and prevent other features to be tested. 

 

1.3.7. Recurrence 

The test manager will, in cooperation with project managers decide whether a test must be repeated or not. 

Different situations in which this must be considered are: 

• Test data is not sufficient. 

• Reported errors are not possible to reproduce. 

• The number of findings is assumed too high. 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 8 

 

It may also be required to perform a regression test if the System test has found errors in one set of modules and 

the bug-fixes is assumed to influence other modules. Regression testing is done automatically during the build 

process, as part of the standard Continuous Integration environment. 

 

1.4. Test documentation 

The purpose of the test documentation is: 

• It shall ensure that the test may be carried out in an effective way. 

• It shall document the results from the tests and disseminate the knowledge achieved during the test. 

• It shall document all test that have been performed and explicit explore the test that have not been 

performed, if any. 

 

The contractor is responsible for all test documentation for the Module test, the Integration test, the System test, 

the Performance test as well as the Deployment and Installation test prior to customer acceptance test. 

 

1.5. Test Plan 

The test plan shall support the planning and execution of each test. The main goal is that thetest may be 

performed in an efficient way and that the needed resources (human resources, infrastructure, surrounding 

systems and test data) are allocated as expected. Below is a brief description of the elements in the test plan that 

should be developed for each test:  

• Introduction. 

• Deviation from overall test strategy (if any) and the reason for this. 

• Which objects are to be tested. 

• Which characteristics that are to be tested (refer the table in section 1.2). 

• Any preconditions or assumptions. 

• Acceptance criteria. 

• Abandonment criteria. 

• The type of test documentation to be produced. 

• All activities that need to be carried out to perform the test. 

• Any requirements for test infrastructure and basis software. 

• Responsibility an roles. 

• Manning and need for training. 

• A risk analysis. 

• A progress plan with milestones. 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 9 

• An overall description of test procedures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6. Test log 

The test log is recorded during the execution of the test. It is a consecutive report of all activities and findings. 

The test log contains: 

 

• The unique identifier for the test. 

• The person(s) that performed the test and the date and time. 

• Which iteration this was of the test. 

• Any references to detailed test steps. 

• All test observations. 

• Result (including first categorization of findings). 

• The status (accepted or not accepted).Test report 

After each test has been completed a test report shall be produced: 

 

• Summary 

• Any adaptations or deviations to the test plan that has been needed. 

• The actual tests contribution rate to fulfill the intention for the test 

• Evaluation of the test results (according to acceptance, defects, consequences and future risk) 

• A summary of the test activities 

  

Contract 

Test cycles Test script Test case 

Test strategy 

Test plan 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 10 

 

1.7. Test environment 

Module test:   Contractor development environment 

Integration test:   Contractor development environment 

System test:   Contractor system test environment 

Performance test:   Contractor system test environment (not full performance test) 

Deployment and Installation test: Contractor system test environment 

Acceptance test:   Customer acceptance test environment 

Approval period:   Customer hosting environment 

 

 

2. Acceptance test and approval period 

2.1. Introduction 

This chapter details: 

 

• Execution of test and acceptance of the delivery. 

• The approval period. 

• Criteria for acceptance. 

• Procedure for error reporting and correction. 

The details of Acceptance Test will be defined in the Acceptance Test Plan. 

 

2.2. Requirements for execution of acceptance test 

The Customer is responsible for the execution of the acceptance test. The contractor shall support the customer 

during the acceptance test. 

If the Customer finds errors or defects, these findings shall be evaluated and categorized according to section 

1.3.4, and be reported without unfounded delay to the Contractor. 

All findings shall be described in detail by the Customer and be assigned a unique reference number. The 

description shall reference a unique test that is identified in the agreed test specification developed for the 

acceptance test. 

The Contractor shall record all findings reported, and must continuously be able to report the status on the 

analysis and correction process. 

The Contractor is obliged to start working on findings categorized as Critical or Serious without unfounded 

delay (within normal business hours). 

 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 11 

2.3. Precondition before installation for acceptance test 

The following preconditions must exist before the Acceptance test can be started: 

• The number of errors from the Contractors System test shall be within the agreed limits (refer section 

1.3.5). 

• The System test results shall be accepted by the responsible authority at the Contractor and the 

Contractor must have provided the Customer with the System test report. 

• The Deployment and Installation test report from the Contractor shall be provided to the customer. 

 

2.4. Strategy 

During the Acceptance test the Customer shall ensure that the delivery fulfills the requirement specification. 

The Acceptance test shall also form the basis for the decision whether the delivery can be put into production or 

not. 

The Customer decides which parts that should be tested and the detail of each test. Test reports and test 

procedures from the Contractors previous tests may be reused or modified. 

 

2.5. Stop and restart of Acceptance test 

The Acceptance test will be paused if one of the following occurs:  

• The error found prevents further testing of one or several sub-systems. 

• Larger changes are needed to fix the error and it is considered that further test will have to be repeated after 

the changes have been implemented. 

• The error will have large implications on the results of further test in a way that make it hard to decide if 

deviations from expected result are a consequence of the original error or a new finding. 

 

The Acceptance test will be resumed when the error(s) that caused the test to be paused has been fixed and a 

new version of the module(s) is installed. It will be an individual evaluation at which stage in the test the test 

will carry on or if the test should start from the beginning.  

 

The acceptance test will be stopped if: 

• Critical errors are found. 

• The total number of errors found makes it obvious that the delivery will not be accepted. 

The Acceptance test will be restarted when the error(s) that caused the test to be paused has been fixed and a 

new version of the module(s) is installed. In this case the Acceptance test will always restart at the beginning.  

 

2.6. Acceptance of the delivery 

The delivery shall be accepted when the Acceptance test has been conducted and the following conditions are 

fulfilled: 

 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 12 

• There shall be no open errors categorized as Critical or Serious. 

• According to the customer judgment the number of open errors categorized as Less serious does not prevent 

the system from being put into production. 

• A plan for correction of remaining errors has been accepted by both parties. 

 

2.7. Approval period 

2.7.1. Introduction 

During the approval period the Customer is responsible for the collection and registration of any findings and to 

report them to the Contractor. 

2.7.2. Final acceptance of the delivery 

The delivery shall be accepted when the expiration of the approval period and the following conditions are 

fulfilled: 

• There shall be no open errors categorized as Critical or Serious. 

• According to the customer judgment the number of open errors categorized as Less serious are acceptable. 

• An agreement on which of the remaining errors should be fixed, based on their priority and a plan for their 

correction errors has been accepted by both parties. 

 

2.8. Error reporting and management 

If errors are found the following procedure shall be followed: 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 13 

1. Error found

Customer

Refused /
Posponed

Error report

To error correction

2. Decission

3. Error 
corrected

 
 

1. Error found 
Al findings shall be registered in a bug tracking system. 

2. Decision 
The Contractor evaluate the reported error and propose one of the following decisions: 

• The error reported is refused. The Contractor evaluates the reported incident to be caused by wrong 

usage or wrong data input. 

• The error reported is assumed minor and the error correction should be postponed to next 

maintenance release. 

• The error will be corrected as soon as possible. 

Any other action that is proposed than error correction must be accepted by the Customer. 

3. Error corrected 
The error is corrected, tested and correct operation has been verified. The end-user(s) that reported the error 

has been informed. 

 

2.9. Registration of errors 

When an error is found, the following information must be registered by the Customer and the relevant 

information objects should be updated by the Contractor to reflect progress in the error correction procedure.  

• The name of the person that has registered the error. 

• The department or organization of that person. 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 14 

• Date and time. 

• Title: Short description of the error. 

• Error reference/number (will usually be automatically generated). 

• Current status: Registered, Assigned, In progress, Error corrected, Correction verified). 

• The module, application or function where the error was discovered. 

• Classification: Critical, Serious, Less serious. 

• Detailed description of the error including the data or external objects involved. 

• Where possible steps to reproduce the error. 

• Any suggested solutions. 

• Consequence if the error is not corrected. 

 

3. Testing tools and other supporting tools 

The following list of test-and supporting tools that are used is taken from Appendix 3, Customer technical 

platform: 

 

Tool Product Version Vendor License 

Bug tracking Bugzilla 3.0.5 Mozilla Mozilla Public License 

Test Management Hudson Continuous 

Integration Server 

1.329 Sun Microsystems MIT license 

Build Management Maven 2.2.1 Apache Software 

Foundation 

The Apache Software 

License, Version 2.0 

ConfigurationManagement Subversion  Tigris.org Subversion License 

Performance test Jmeter 2.3.4 Apache Software 

Foundation 

The Apache Software 

License, Version 2.0 

Profiling Rational PurifyPlus 7 IBM Closed source 

Code analysis FindBugs 1.3.9 Sourceforge GNU LGPL 

Test coverage Cobertura 1.9.3 Sourceforge Apache Software 

License, Version 1.1 , 

GNU General Public 

License, Version 2.0 

Standards compliance Checkstyle 5.0 Sourceforge GNU LGPL 

Functional tests Jemmy V2 Java.net OSI– CDDL 

Security testing WebScarab 20080814 OWASP CreativeCommons 3 

Securit testing Paros Proxy 3.2 MileSCAN 

Technologies 

Freeware 

 

 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 15 

4. Quality assurance, error handling and configuration control 

4.1. Quality Management 

To ensure that the project is evolving within the expected, Quality Management measures will be used during 

the project life cycle. The project quality objectives are as follows: 

 

a) To deliver the agreed project outcomes on schedule and within budget. 

b) To achieve the business goals of the project.  

c) To manage the project using a defined and documented methodology.  

d) To track the project performance metrics to determine if it is performing above the defined thresholds. 

 

The Quality Management measures will be defined in the Project Quality Plan, and executed by the Quality 

Manager. The Quality Management Plan will define: 

 

a) The quality assurance activities to be followed to the full extent of work, such as progress reviews, 

program scheduling & control.  

b) The organization and responsibilities for all project quality activities within the project.  

c) Definition of tools and methodologies used in the project.  

d) Reference of all activities to ensure final acceptance of the product.   

e) Definition of the corrective action process within the project. 

f) Definition of the project performance metrics and their threshold values. 

 

This plan will require regular review and updates as the project progresses to ensure it is effective throughout 

the project lifecycle. 

 

There are three major processes in quality management: 

 

a) Quality Planning: Quality planning identifies quality standards that are relevant to the project, defines 

new quality standards required by the project and plans activities needed to satisfy these requirements.  

It is a process that supports overall project planning and shallbe performed regularly throughout the 

project lifecycle.  Quality planning is performed in parallel with other planning processes.  The impact 

to other processes to meet quality standards might include changes to functional specifications of the 

product, adjustments to the cost or schedule, and/or additional risks for the project. Planning activities 

will include articulating or at a minimum, referencing the deliverables, their acceptance criteria, and the 

process to be used for review and acceptance to ensure the delivery of a quality solution.  Such 

activities will be approved by the customer before proceeding with project execution activities. 

 

b) Quality Assurance (“QA”): QA is the planned activities of a project that monitor all other quality 

management processes to ensure that the project will meet the quality standards defined in the quality 

plan.  QA monitors the levels of quality being achieved and shallbe performed throughout the life of the 

project.  Specific objectives of the QA process include: represent quality concerns in walk-through 

reviews, provide an assessment of the completeness and consistency of deliverables, ensure that project 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 16 

deliverables meet the quality requirements, and conduct project reviews to determine the health of the 

project. 

 

c) Quality Control (“QC”): QC is the monitoring and analysis of certain project results and data to 

determine if they comply with the relevant quality standards and defined project performance metrics.  

Analysis is performed to determine ways to eliminate causes of unsatisfactory results.  QC should be 

performed throughout the length of the project execution. 

 

Deliverables:  

 
a) Project Quality Plans: Besides the company level Quality Manual, specific project quality needs will 

be included in the Project Quality plan, which is part of the Project Management Plan. This plan is 

based on a standard Project Management Plan, which is in turn, tailored to suit the needs of every 

specific project. 

 

4.2. QA Assurance and Control 

4.2.1. Implementation 

A continuous integration process has been put in place that helps accelerate the speed at which errors are 

detected and notified to developers and QA managers. Several tools are also used to automate as much as 

possible the detection of bugs. 

 

 

 
Figure 2 – Continuous Integration Process 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 17 

 

Process description: 

• Software Development Manager creates entries in the Bug Tracking System and assigns work 

• Developer implements code functionality and Unit Testsaccording to the specified requirements. 

Functionality is developed using the Eclipse IDE with Checkstyle, Findbugs and several other plug-ins 

that accelerate the development speed and allow doing quality checks as code is being written. That 

means that any problems are detected earlier in the development cycle.  

• Developer uses Maven to build code and run Unit Tests and Manual tests. 

• Periodic Peer Reviews are done on the code. 

• When Unit Tests and Manual tests are successful, the code is committed to Source Control, associated 

with the Bug Tracking System entry ID. 

• The Test Management – Hudson Continuous Integration Servergets the later code updates and runs 

several verifications: 

 

� Runs Checkstyleto verify coding standards compliance. 

� Runs FindBugsto identify known bug patterns in the code. 

� Runs automated (scripted) functional tests / smoke test. 

� Compiles the code usingBuild Management – Maven. 

� Runs the Unit Tests using Junit and Coberturato determine the level of code coverage 

that the Unit Tests provide. 

� Runs tests using Load testing – JMeter and Jemmyfor GUI tools. 

 

• If there is any error (such as a compilation error) or any of the established rules regarding, 

FindBugswarnings, Checkstylewarnings or code coverage are not met, the developer is immediately 

notified using internal Instant Messaging. An e-mail is also sent to the QA Manager and the developer. 

 

Peer Review is periodically arranged on each developer’s code, that is, a second member of the team reviews 

the written code and verifies it is correct and fulfills Software Quality Standards followed by the Contractor. 

This systematic examination of computer source code allows finding and fixing mistakes overlooked in the 

initial development phase, improving both the overall quality of software and the developers' skills. 

 

Periodically, intermediate releases are created and, in addition tofunctional and integration tests, they are run 

through the tests described in the sections below. 

 

4.2.2. Regression tests 

Regression tests validate that old functionality has not been broken by newer functionality. Regression tests are 

done in two ways: By automated tests scripts (using Jemmy or custom scripts) that use the entire application 

and by repeating manual test cases, even those that belong to functionality that has not changed. 

 

• Procedure description: 

� Release is created. 

� Every manual test case for the application is executed. 

� Every automated test case is executed. 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 18 

� If any test fails to meet the success criteria, it is added to the issues reporting database, 

to be prioritized and fixed. 

 

4.2.3. Usability and accessibility testing: 

Please refer Appendix 6 section 4 “Accessibility and Usability” for our user centric development method.  

 

4.2.4. Security testing 

In addition to the security testing procedures, Scytl Engineers receive specific secure software development 

techniques training, that includes information on how to program defensively to prevent code patterns that 

might lead to potential risks such as buffer overflows, SQL injection, cross site scripting, etc. That ensures that 

security is programmed into the application from the beginning. 

 

• Process description: 

� When compilation is done, Findbugs is used to detect common error patterns. 

� Mandatory code reviews are done on security related code by other team members and 

by R&D department members. 

� Web applications are tested using tools such aParos and WebScarab. 

� Penetration tests are performed on production releases by an external company, which 

follows OpenSource OSSTMM e ISSAF techniques for penetration testing. This 

guarantees the objectivity of the audit being done, since the audit team is completely 

unrelated to the development team. 

� Any issue resulting from the audit and tests are applied added to the issue reporting 

database to be prioritized and fixed. 

4.2.5. Volume and performance testing 

Each release is tested under high loads to verify that it behaves correctly. 

 

• Process description: 

� Release is created. 

� High load test cases are defined for each release. 

� These test are automated using Jmeter and include: 

• Tests with low amount of data. 

• Tests with high amounts of data, whitin the expected application operation 

range (Volume testing). 

• Tests with higher data than the system is expected to operate with (Stress 

testing). 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 19 

� Analysis of memory usage and performance bottlenecks using Rational Purify. 

� A success/failure criteria is defined for every test case. 

� These test cases are executed and the system performance is measured and compared to 

the success criteria.  

� Any value outside the expected range is reported as an issue to be prioritize and fixed. 

After the tests, all resulting issues are prioritized by the project management and an agreement on which ones 

will be fixed is done. After those issues are fixed, the tests are run againuntil the project management 

determines that the implemented code/feature/module fulfills the defined requirements.  

 

This phase is complete when the following have been reviewed and, in those instances identified by an *, 

brought under configuration control:  

 

• Baselined software product* 

• Unit test, unit test results* 

• Function integration tests, function integration test results* 

• Administration documentation 

• System-level test case description* - signature VP engineering, product manager, quality assurance 

manager 

 

 

The following products are the outputs of this phase: 

 

• Baselined software product 

• Unit tests 

• Unit test results 

• Function integration tests 

• Function integration test results 

• System-level test cases 

• Code Review Report 

4.3. Releasing 

The objective of this procedure is to prepare and deploy a release of the project. The release can be an internal 

or an external release. Internal releases are the releases done inside the Software Engineering department as 

milestones of the development process and never reach the customer. External releases are all the releases that 

go to the customer for acceptance.  

 

The contents of every specific release will be detailed in the acceptance test plan. In general terms, a release 

will include one or many of the following (when applicable) 

• Source code 

• Unit tests 

• Compilation script 

• Technical and functional documentation 

• Test cases and scripts 

• Results of internal testing 

 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 20 

The release procedure is always applied after the implementation of a version of the software 

module/application. The release procedure does not include the on-site installation to the customer, neither the 

maintenance procedure. 

 

When the release is external, then the system must be installed in the testing or pre-production environment so 

the customer can validate, with the Contractor’s support, the correct behavior performance of the developed 

system, basing such testing on the defined User test cases. 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 21 

 
Figure 3 – Releasing process 
 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 22 

4.4. Configuration Management 

Software configuration management (or SCM) is the task of tracking and controlling changes in the software. It 

includes revision control and baselines.  

 

SCM procedures are supported by version control tools.Every configuration item (document, source code file, 

unit test, test cases, scripts, configuration files, etc) is stored in the centralized repository of 

theConfiguration/Version  Management - Subversion version control server. This tool keeps track of every 

change made.At specific moments, such as when a delivery is accepted, the current status of the items under 

version control will be baselined and a tag will be created in the version control server. 

 

Configuration Management procedures will be described as part of a Configuration Management Plan, that will 

be developed during the project. 

 

4.5. Change Management 

The Project Manager is responsible for executing the change management process. 

 

Changes to scope during the delivery of any project introduce risks that can, if not managed effectively, cause 

projects to fail.  These failures may be due to reasons of time constraint, budget overrun, and inadequately 

assessed functional or technical impact of the change. Uncontrolled changes can disrupt development and 

implementation and impact the balance between schedule and quality. Anyone associated with the project may 

initiate a request for a change. However, a baseline must be maintained against which the impact of approved 

changes is assessed. 

 

Changes to the project that impact schedule and cost will be reviewed in detail.  Any possible financial impact 

of the change will be determined, and if appropriate, further charges will be documented by the Contractor and 

passed on to the customer. The change will be documented and signed off by both the Contractor and the 

customer prior to work commencing. 

 

Deliverables (if required):  

a) Change Request: this document reflects the changes agreed on the project, including their impact on 

schedule/pricing/functionalities. 

 

b) Delay Notification: this document reflects project delays agreed on the project schedule. 

4.6. Tools Used 

Below there is a list of the main tools employed by the Contractor to manage its projects and develop software. 

The Contractor is continuously monitoring the market to adopt the best available practices and tools.With the 

sole exception of Rational Purify, all the testing and configuration control tools used are Open Source. That 

means that it would be possible for the customer to set up an equivalent test environment without having to buy 

additional licenses. 

 

 

 



E-vote 2011 

 

Appendix 5 Testing and Approval 

 

 

 

 

 

4.6.1. Bug Tracking – Bugzilla

Bugzilla is a Web-based general-purpose bugtracker tool originally developed and used by the Mozilla project, 

and licensed under the Mozilla Public License. 

it solutions. 

 

 

While the potential exists in the code to turn Bugzilla into a technical support ticket system, task management 

tool, or project management tool, Bugzilla

to track software defects. Mandated design requirements include:

 

• The ability to run on freely available, open source tools. While Bugzilla development includes work to 

support commercial databases, tools, and operating systems, this is not intended to come at the expense 

of open source ones. 

• The maintenance of speed and efficiency at all costs. One of Bugzilla's major attractions to developers 

is its lightweight implementation and speed, 

possible, data fetching is kept as light as possible, and generation of heavy HTML is avoided.

• Tickets. For instance, Mozilla.org and the MediaWiki project use it to track feature requests as well. 

Bugs can be submitted by anybody, and will be assigned to a particular developer. Various status 

updates for each bug are registered and maintained

practice, most Bugzilla projects allowing the public to file bugs 

for Bugzilla itself — assign all bugs to a gatekeeper, whose job it is to assign responsibility and priority 

level. 

4.6.2. Test Management – Hudson Continuous Integration Server

Hudson is a continuous integration tool written in J

or the Glassfish application server. It supports SCM tools including CVS and Subversion, and can execute 

Apache Ant and Apache Maven based projects, as well as arbitrary shell scripts and Windows 

commands.The Contractor uses it to configure automated tests on all its developed applications.

 

 

Version:

Date:

 

 

Page 23 

Bugzilla 

purpose bugtracker tool originally developed and used by the Mozilla project, 

and licensed under the Mozilla Public License. The Contractor adopted it long ago for use as a defect tracker for 

 
Figure 4 – Bugzilla screenshot 

While the potential exists in the code to turn Bugzilla into a technical support ticket system, task management 

tool, or project management tool, Bugzilla's developers have chosen to focus on the task of designing a system 

to track software defects. Mandated design requirements include: 

The ability to run on freely available, open source tools. While Bugzilla development includes work to 

databases, tools, and operating systems, this is not intended to come at the expense 

The maintenance of speed and efficiency at all costs. One of Bugzilla's major attractions to developers 

is its lightweight implementation and speed, so calls into the database are minimized whenever 

possible, data fetching is kept as light as possible, and generation of heavy HTML is avoided.

Tickets. For instance, Mozilla.org and the MediaWiki project use it to track feature requests as well. 

be submitted by anybody, and will be assigned to a particular developer. Various status 

registered and maintained, together with user notes and bug examples. In 

practice, most Bugzilla projects allowing the public to file bugs — such as the Bugzilla bug database 

assign all bugs to a gatekeeper, whose job it is to assign responsibility and priority 

Hudson Continuous Integration Server 

Hudson is a continuous integration tool written in Java, and runs in a servlet container, such as Apache Tomcat 

or the Glassfish application server. It supports SCM tools including CVS and Subversion, and can execute 

Apache Ant and Apache Maven based projects, as well as arbitrary shell scripts and Windows 

uses it to configure automated tests on all its developed applications.

 

Version: 1.0 

Date: 15/12/2009 

 

 

purpose bugtracker tool originally developed and used by the Mozilla project, 

adopted it long ago for use as a defect tracker for 

While the potential exists in the code to turn Bugzilla into a technical support ticket system, task management 

's developers have chosen to focus on the task of designing a system 

The ability to run on freely available, open source tools. While Bugzilla development includes work to 

databases, tools, and operating systems, this is not intended to come at the expense 

The maintenance of speed and efficiency at all costs. One of Bugzilla's major attractions to developers 

so calls into the database are minimized whenever 

possible, data fetching is kept as light as possible, and generation of heavy HTML is avoided. 

Tickets. For instance, Mozilla.org and the MediaWiki project use it to track feature requests as well. 

be submitted by anybody, and will be assigned to a particular developer. Various status 

, together with user notes and bug examples. In 

uch as the Bugzilla bug database 

assign all bugs to a gatekeeper, whose job it is to assign responsibility and priority 

ava, and runs in a servlet container, such as Apache Tomcat 

or the Glassfish application server. It supports SCM tools including CVS and Subversion, and can execute 

Apache Ant and Apache Maven based projects, as well as arbitrary shell scripts and Windows batch 

uses it to configure automated tests on all its developed applications. 



E-vote 2011 

 

Appendix 5 Testing and Approval 

 

 

 

 

 

 

 

Builds can be started by various means, including scheduling via a cron

builds have completed, and by requesting a specific build URL.

 

During recent years, Hudson has become a popular alternative to CruiseControl and other open

servers. At the JavaOne conference in May 2008, it was the winner of Duke's Choice Award in 

Solutions category. 

4.6.3. Build Management – Maven

Maven is a software project management and comprehension tool. Based on the concept of a project object 

model (POM), Maven can manage a project's build, reporting and documentation from a central piece

information. This is its primary use by The Contractor

 

Maven 2.0 is based around the central concept of a build lifecycle. What this means is that the process for 

building and distributing a particular artifact (project) is clearly defined.

 

 

 

Version:

Date:

 

 

Page 24 

Figure 5 – Hudson screenshot 

Builds can be started by various means, including scheduling via a cron-like mechanism, building when other 

ompleted, and by requesting a specific build URL. 

Hudson has become a popular alternative to CruiseControl and other open

JavaOne conference in May 2008, it was the winner of Duke's Choice Award in 

Maven 

Maven is a software project management and comprehension tool. Based on the concept of a project object 

model (POM), Maven can manage a project's build, reporting and documentation from a central piece

The Contractor. 

Maven 2.0 is based around the central concept of a build lifecycle. What this means is that the process for 

building and distributing a particular artifact (project) is clearly defined. 

 

Version: 1.0 

Date: 15/12/2009 

 

 

 

like mechanism, building when other 

Hudson has become a popular alternative to CruiseControl and other open-source build 

JavaOne conference in May 2008, it was the winner of Duke's Choice Award in Developer 

Maven is a software project management and comprehension tool. Based on the concept of a project object 

model (POM), Maven can manage a project's build, reporting and documentation from a central piece of 

Maven 2.0 is based around the central concept of a build lifecycle. What this means is that the process for 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 25 

 
Figure 6 – Maven screenshot 

 

For the person building a project, this means that it is only necessary to learn a small set of commands to build 

any Maven project, and the POM will ensure they get the results they desired. 

 

There are three built-in build lifecycles: default, clean and site. The default lifecycle handles project 

deployment; the clean lifecycle handles project cleaning, while the site lifecycle handles the creation of project's 

site documentation. 

 

For example, the default lifecycle has the following build phases: 

 

• validate - validate the project is correct and all necessary information is available. 

• compile - compile the source code of the project. 

• test - test the compiled source code using a suitable unit testing framework. These tests should not 

require the code be packaged or deployed. 

• package - take the compiled code and package it in its distributable format, such as a JAR. 

• integration-test - process and deploy the package if necessary into an environment where integration 

tests can be run. 

• verify - run any checks to verify the package is valid and meets quality criteria. 

• install - install the package into the local repository, for use as a dependency in other projects locally. 

• deploy - done in an integration or release environment, copies the final package to the remote repository 

for sharing with other developers and projects. 

 

  



E-vote 2011 

 

Appendix 5 Testing and Approval 

 

 

 

 

 

4.6.4. Configuration/Version  Management 

The version controltool provides assistance for the control of the production process and modification of an 

application. Subversion is the main tool used by 

 

 

Figure 7 
 

It lowers the risk of error and ensures consistency of developments within teams. This tight control is reached 

by concurrent access to a component and the lock components extracted for updates.

 

It allows control of developments faster and better through the management of releases, and concurrent and 

parallel developments. 

 

Teams keep the change history of all components, which allows you to find and

an application, maintaining it reliable, consistent and reproducible.

 

It provides the configuration manager(as well as the 

application versions, construction of the deliverables, querying the repository for a list of locked components, 

report changes in a component, and the list of components.

  

 

 

Version:

Date:

 

 

Page 26 

Configuration/Version  Management - Subversion 

tool provides assistance for the control of the production process and modification of an 

n. Subversion is the main tool used by The Contractor for such tasks. 

Figure 7 – Subversion screenshot 

It lowers the risk of error and ensures consistency of developments within teams. This tight control is reached 

and the lock components extracted for updates. 

It allows control of developments faster and better through the management of releases, and concurrent and 

Teams keep the change history of all components, which allows you to find and restore any previous version of 

an application, maintaining it reliable, consistent and reproducible. 

as well as the developers) utilities as effective tools for management of 

e deliverables, querying the repository for a list of locked components, 

report changes in a component, and the list of components. 

 

Version: 1.0 

Date: 15/12/2009 

 

 

tool provides assistance for the control of the production process and modification of an 

It lowers the risk of error and ensures consistency of developments within teams. This tight control is reached 

It allows control of developments faster and better through the management of releases, and concurrent and 

restore any previous version of 

developers) utilities as effective tools for management of 

e deliverables, querying the repository for a list of locked components, 



E-vote 2011 

 

Appendix 5 Testing and Approval 

 

 

 

 

 

4.6.5. Load testing – JMeter 

JMeter is an Apache Jakarta project that can be used as a load testing tool for analyzing and measur

performance of a variety of services, with a focus on web applications.

 

JMeter can be used as a unit test for JDBC database connections, FTP, LDAP, Webservices, JMS, HTTP and 

generic TCP connections. JMeter can also be configured as a monitor, alt

ad-hoc solution in lieu of advanced monitoring solutions.

 

 

 

While JMeter is classified as a "load generation" tool, this is not a complete description of the 

supports assertions to ensure the data received is correct, per thread cookies, configuration variables and a 

variety of reports. 

 

 

 

Version:

Date:

 

 

Page 27 

 

JMeter is an Apache Jakarta project that can be used as a load testing tool for analyzing and measur

performance of a variety of services, with a focus on web applications. 

JMeter can be used as a unit test for JDBC database connections, FTP, LDAP, Webservices, JMS, HTTP and 

generic TCP connections. JMeter can also be configured as a monitor, although this is typically considered an 

hoc solution in lieu of advanced monitoring solutions. 

 
Figure 1 – JMeter screenshot 

While JMeter is classified as a "load generation" tool, this is not a complete description of the 

supports assertions to ensure the data received is correct, per thread cookies, configuration variables and a 

 

Version: 1.0 

Date: 15/12/2009 

 

 

JMeter is an Apache Jakarta project that can be used as a load testing tool for analyzing and measuring the 

JMeter can be used as a unit test for JDBC database connections, FTP, LDAP, Webservices, JMS, HTTP and 

hough this is typically considered an 

While JMeter is classified as a "load generation" tool, this is not a complete description of the tool. JMeter 

supports assertions to ensure the data received is correct, per thread cookies, configuration variables and a 



E-vote 2011 

 

Appendix 5 Testing and Approval 

 

 

 

 

 

4.6.6. Rational Purify 

IBM Rational Purify is a runtime analysis solution designed to help developers write more relia

Reliability is ensured via two crucial functions: memory corruption detection and memory leak detection. 

Rational Purify packages support for these two runtime analysis capabilities in a single product.

 

Figure 9 
 

4.6.7. FindBugs 

FindBugs looks for bugs in Java programs.  It is based on the concept of bug patterns.  A bug pattern is a code 

idiom that is often an error. Bug patterns arise for a variety of reasons: 

 

o Difficult language features 

o Misunderstood API methods 

o Misunderstood invariants when code is modified during maintenance 

o Garden variety mistakes: typos, use of the wrong boolean operator 

 

FindBugs uses static analysis to inspect Java bytecode for occurrences of bug patterns.  Static analysis means 

that FindBugs can find bugs by simply inspecting a program's code: executing the program is not necessary.  

This makes FindBugs very easy to use: in general, you should be able to use it to look for bugs in your code 

within a few minutes of downloading it.  FindBugs w

you don't even need the program's source code to use it.  

 

 

Version:

Date:

 

 

Page 28 

IBM Rational Purify is a runtime analysis solution designed to help developers write more relia

Reliability is ensured via two crucial functions: memory corruption detection and memory leak detection. 

Rational Purify packages support for these two runtime analysis capabilities in a single product.

 
Figure 9 – Rational Purify screenshot 

FindBugs looks for bugs in Java programs.  It is based on the concept of bug patterns.  A bug pattern is a code 

idiom that is often an error. Bug patterns arise for a variety of reasons:  

Difficult language features  

Misunderstood API methods  

sunderstood invariants when code is modified during maintenance  

Garden variety mistakes: typos, use of the wrong boolean operator  

FindBugs uses static analysis to inspect Java bytecode for occurrences of bug patterns.  Static analysis means 

s can find bugs by simply inspecting a program's code: executing the program is not necessary.  

This makes FindBugs very easy to use: in general, you should be able to use it to look for bugs in your code 

within a few minutes of downloading it.  FindBugs works by analyzing Java bytecode (compiled class files), so 

you don't even need the program's source code to use it.   

 

Version: 1.0 

Date: 15/12/2009 

 

 

IBM Rational Purify is a runtime analysis solution designed to help developers write more reliable code. 

Reliability is ensured via two crucial functions: memory corruption detection and memory leak detection. 

Rational Purify packages support for these two runtime analysis capabilities in a single product. 

FindBugs looks for bugs in Java programs.  It is based on the concept of bug patterns.  A bug pattern is a code 

FindBugs uses static analysis to inspect Java bytecode for occurrences of bug patterns.  Static analysis means 

s can find bugs by simply inspecting a program's code: executing the program is not necessary.  

This makes FindBugs very easy to use: in general, you should be able to use it to look for bugs in your code 

orks by analyzing Java bytecode (compiled class files), so 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 29 

 
Figure 9 – FindBugs screenshot 

 

FindBugs is free software, available under the terms of the Lesser GNU Public License.  It is written in Java, 

and can be run with any virtual machine compatible with Sun's JDK 1.5.  It can analyze programs written for 

any version of Java.  FindBugs uses BCEL to analyze Java bytecode.  As of version 1.1, FindBugs also supports 

bug detectors written using the ASM bytecode framework.  FindBugs uses dom4j for XML manipulation. 

4.6.8. Cobertura 

Cobertura is a free Java tool that calculates the percentage of code accessed by tests. It can be used to identify 

which parts of your Java program are lacking test coverage. It is based on jcoverage. Features: 

 

o Can be executed from ant or from the command line. 

o Instruments Java bytecode after it has been compiled. 

o Can generate reports in HTML or XML. 

o Shows the percentage of lines and branches covered for each class, each package, and for 

the overall project.  

o Shows the McCabe cyclomatic code complexity of each class, and the average cyclomatic 

code complexity for each package, and for the overall product.  

o Can sort HTML results by class name, percent of lines covered, percent of branches 

covered, etc. And can sort in ascending or descending order. 



E-vote 2011 

 

Appendix 5 Testing and Approval 

 

 

 

 

 

Figure 10 

4.6.9. Checkstyle 

Checkstyle is a development tool to help programmers write Java code that adheres to a coding standard. It 

automates the process of checking Java code to spare humans of this boring (but important) task. This makes it 

ideal for projects that want to enforce a coding standard.

 

 

Figure 11 
 

 

 

Version:

Date:

 

 

Page 30 

Figure 10 – Cobertura screenshot 

Checkstyle is a development tool to help programmers write Java code that adheres to a coding standard. It 

Java code to spare humans of this boring (but important) task. This makes it 

ideal for projects that want to enforce a coding standard. 

 
Figure 11 – Checkstyle screenshot 

 

Version: 1.0 

Date: 15/12/2009 

 

 

 

Checkstyle is a development tool to help programmers write Java code that adheres to a coding standard. It 

Java code to spare humans of this boring (but important) task. This makes it 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 31 

Checkstyle is highly configurable and can be made to support almost any coding standard. An example 

configuration file is supplied supporting the Sun Code Conventions. As well, other sample configuration files 

are supplied for other well-known conventions. 

 

4.6.10. Jemmy 

Jemmy is a tool that allows the creation of automated (scripted) tests for Java GUI applications. 

 

Jemmy represents the most natural way to automate the testing of Java GUIs - the automated tests are 

themselves written in Java. Having the tests written in Java allows all the flexibility of a high level language, 

without having to learn yet another programming language. Jemmy is a Java library allowing you to simulate 

user actions to test Java GUI logic and then automatically compare the GUI's actual behaviour with expected 

behaviour. Jemmy is obviously perfect for automated Test Driven Development and/or Concept Oriented 

Development. 

4.6.11. WAVE 

WAVE is a free web accessibility evaluation tool provided by WebAIM. It is used to aid humans in the web 

accessibility evaluation process. Rather than providing a complex technical report, WAVE shows the original 

web page with embedded icons and indicators that reveal the accessibility of that page. 

 

 

 

4.6.12. TAW 

TAW is an on-line web accessibility analyzer 

 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 32 

 
 

4.6.13. W3C Markup Validation Service 

This in an online web offered by the W3C that allows to validate a web page for conformance to the HTML 

standard. 

 
 

4.6.14. Junit 

Junit is an Open Source Java Unit Test framework. 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 33 

 
 

4.6.15. JAWS 

JAWS is a screen reader. It integrates with the Java Accessibility toolkit to provide accessible Java applications. 

 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 34 

4.6.16. Paros 

"Paros" is a software for people who need to evaluate the security of their web applications. It is free of charge 

and completely written in Java. Through Paros's proxy nature, all HTTP and HTTPS data between server and 

client, including cookies and form fields, can be intercepted and modified. 

 

 
 

4.6.17. WebScarab 

WebScarab is a framework for analysing applications that communicate using the HTTP and HTTPS protocols. 

It is written in Java, and is thus portable to many platforms. WebScarab has several modes of operation, 

implemented by a number of plugins. In its most common usage, WebScarab operates as an intercepting proxy, 

allowing the operator to review and modify requests created by the browser before they are sent to the server, 

and to review and modify responses returned from the server before they are received by the browser. 

WebScarab is able to intercept both HTTP and HTTPS communication. The operator can also review the 

conversations (requests and responses) that have passed through WebScarab. 



E-vote 2011 

 

  

 Version: 1.0 

Appendix 5 Testing and Approval Date: 15/12/2009 

 

 

   

   

 Page 35 

 


