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Executive summary 

On September 9th 2013, parliamentary elections will be held in Norway. For the 2013 
elections, 12 of the 428 local municipalities in Norway will offer their citizens the 
opportunity to vote in advance over the Internet, as part of a trial project organized by the 
Norwegian Ministry of Local Government and Regional Development. 

Internet voting has previously been piloted in 2011, with ten municipalities participating in a 
trial run for the local elections. The system is based on an advanced cryptographic voting 
protocol that has been designed to maintain the security, anonymity and verifiability of votes 
cast online, while requiring a minimum of trust between system components. 

The Norwegian Ministry of Local Government and Regional Development hired mnemonic 
to perform a “third party review of those parts of the [electronic voting system] that 
implement cryptographic primitives and generate keys”, to verify that this is done securely 
and correctly. 

mnemonic has not discovered any critical cryptographic weaknesses that would preclude the 
use of the Internet voting system in the forthcoming election. 

The most serious technical issue discovered during the review is an error in an encryption 
format for storing password-protected data. If patching this bug before the elections is 
deemed too risky, we recommend compensating with operational safeguards, such as strictly 
limiting and monitoring access to systems where such data is stored. 

A number of other flaws and potential security issues have been uncovered, some of which 
require further analysis by the vendor. Based on the audit as a whole, and our current 
understanding of the voting system implementation, mnemonic would like to suggest four 
main recommendations: 

1. Address the security issue(s) caused by cryptographic weaknesses in the password-
based encryption function cipherSymmetrically in the UtilsRBAC class (4.3.2.1). 

2. Ensure that sufficient safeguards are in place to maintain the integrity of the audit 
events, despite potential vectors for dishonest parties to truncate or manipulate data 
from the secure log appenders (4.4.1). 

3. Verify that observations made relating to key generation (4.5) do not threaten the 
overall security of the protocol, by inadvertently revealing keys, passwords or other 
security-critical information. 

4. Take concrete actions to improve the overall state of the source code, e.g. by 
consolidating and refactoring duplicate code, cleaning up interfaces and 
dependencies, documenting technical architecture and usage, and continually 
improving quality assurance practices in the development process. 

Key stakeholders should review the technical chapters 3 and 4 of the report in detail, and 
take appropriate actions to evaluate each of the findings presented, and assess and manage 
any associated risks. 
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1 Introduction 

On September 9th 2013, parliamentary elections will be held in Norway. In the weeks 
running up to the election, twelve municipalities offer their voters the opportunity for 
advance voting over the Internet, as part of a trial project organized by the Norwegian 
Ministry of Local Government and Regional Development. 

The electronic voting project was originally started in 2008, and a previous trial was held as 
part of the local elections in 2011. General information about the project, including previous 
research and evaluation reports, is available at 
http://www.regjeringen.no/nb/dep/krd/prosjekter/e-valg-2011-prosjektet.html?id=597658.  

The electronic voting system has been implemented by Scytl Secure Electronic Voting SA. 
The back-end system is written in Java, and the voting client runs as Javascript in the user’s 
browser. To ensure transparency and foster trust in the solution, system documentation and 
source code is available to the public, at https://brukerveiledning.valg.no/ and 
https://sourcecode.valg.no/websvn/. 

1.1 Project Mandate 
mnemonic was hired by the Norwegian Ministry of Local Government and Regional 
Development to perform a “third party review of those parts of the [electronic voting 
system] that implement cryptographic primitives and generate keys”, and verify that this is 
done securely and correctly. The review has been carried out in the period from July 9th to 
August 5th, 2013. 

1.2 Scope and limitations 
This review uses a bottom-up approach to analyse the cryptography used in the Java 
implementation of the electronic voting system. The scope of this review is thus quite 
narrow, and we wish to emphasise this fact strongly at this point. 

As a consequence, there are several things that this report is not, including: 

• a general code review covering functional aspects of the source code 
• an audit of the election system configuration 
• a risk assessment of the entire e-voting system 
• a cryptographic evaluation of the secure voting protocol 
• a political statement for or against online voting 

There are also several interesting areas that this report does not cover, including: 

• the Javascript voting client implementation 
• operational aspects of how the voting system is used 
• the security of technical infrastructure, including operating systems and networks 
• trust relationships with third parties, such as the identity provider (Difi/ID-Porten) 
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In a technical source code audit it is easy to focus narrowly on negative findings, deviations 
and errors, and it is worth pointing out that the Internet voting system appears to be 
working well from a functional point of view, while implementing a very advanced, complex, 
and distributed cryptographic protocol. This is in itself a significant achievement. 

The central mission of this review has been to carry out a technical review of those parts of 
the Java source code that implement basic cryptographic and security-related functionality. 
In such a review, the key focus is on the correctness and appropriateness of the low-level 
implementation. As a consequence of this scope, the high-level “bird’s eye” perspective of 
how the different low-level primitives are composed and utilized by the protocol is not 
always present. 

As a secondary output from the audit, the report also presents more general criticisms and 
suggestions for improving the overall quality of the e-voting project. These are both with 
respect to the cryptographic implementation, and for the overall software quality, and are to 
a greater extent subjective assessments, based on prior experience with the security of 
comparably large software development projects. 

Primary audiences for this report include project management, cryptographers, security 
architects, developers, and other key stakeholders, both in the e-voting project and at Scytl. 
It is also expected to be of general public interest. However, readers should be aware that the 
main parts of the report (presented in Chapters 3 and 4) assume a high degree of technical 
familiarity with the Java programming language, cryptographic techniques in general, and 
the e-voting project and protocol in particular. 

1.3 Structure of the report 
The report is divided into five main chapters, and an appendix. 

1. The current chapter provides context and introduction to the source code review, and 
is useful as a less technical summary of the work that has been done. 

2. Chapter 2 presents an overview of the activities performed during the course of the 
project, along with a description of the methodology, tools and overall approach. 

3. Chapter 3 provides an introduction to the e-voting source code, and contains general 
technical remarks and observations from the review. 

4. Chapter 4 is the main technical chapter of the report, and provides analysis of core 
cryptographic packages in the e-voting project. The analysis is organized by Java 
package and class, starting with basic functionalities and moving towards more 
advanced applications. 

5. Chapter 5 concludes the report, and summarizes the main takeaways and 
recommendations from Chapters 3 and 4. 

A. The Appendix provides a list of all specific findings and observations. 
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1.4 Summary of findings 
Findings in the report include more than 40 specific observations that may have a potential 
security impact, as well as the (positive) validation of several of the implemented primitives. 
These are described in Sections 3 and 4 of the report, and summarised in the Appendix. 

It appears that our most serious finding is related to a password-based symmetric encryption 
scheme defined in UtilsRBAC.java, which contains multiple cryptographic weaknesses and 
can leak information about the encrypted data. The class is used in several places, including 
during key generation. It should be noted that this encryption format appears to have been 
defined outside the scope of the Internet voting implementation project. 

Several observations are made regarding the jbasis library, which is a shared library written 
by Scytl and used across many of their projects. The library contains several default settings 
that are insecure or deprecated, and should not be used in new applications. Much of this is 
likely to be due to backwards compatibility, but it means that parts of the library must be 
used rather carefully to maintain security. 

The secure-logger library used for auditing could in some situations permit an attacker with 
file access to truncate and modify the logs, without this being clearly detectable within the 
cryptographic framework. This is probably easiest to prevent through operational means, 
such as a system for log monitoring and collection located in a different security zone. The 
Norwegian system uses Splunk for this purpose. 

Regarding the key generation routines used to set up an election, we have noted specific 
areas where one must be careful to prevent sensitive information from leaking, for instance 
due to master passwords being written temporarily to disk. In practice this should take place 
on an isolated system with very restricted access and an encrypted hard drive, though these 
are once again operational, rather than cryptographic, safeguards. 

On a more general basis, it appears that the overall quality level of the Internet voting system 
implementation has room for improvement, and there is a legitimate concern that the overall 
complexity level of the system, including complicated and tangled dependencies between 
different parts of the code base, may serve both to cause and to conceal security flaws. 

1.5 About the author 
Tor E. Bjørstad holds a Ph.d. in cryptography from the University of Bergen, and has 
professional experience from some of the largest software development projects in the 
Norwegian public sector in recent years. He has worked full-time as a cryptographer and 
security expert since 2006, and has extensive experience with analysis of cryptographic 
primitives and protocols, security standards, and application security testing. 
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2 Project Description 

Conducted by mnemonic as 

Performing consultant Tor E. Bjørstad 

Point of Contact Christian Bull, Ministry of Local 
Government and Regional Development 

Project started 2013-07-09  

Report presented 2013-08-07 

 

2.1 Methodology and tools 
The source code review has not followed a strict formal methodology, though the overall 
approach is inspired by the OWASP Code Review Guide1. Work has consisted of two main 
phases; an initial period reviewing documentation and mapping the code base, followed by 
the source code audit proper. 

Initially the full Internet voting source code was downloaded and built, on a local Linux VM. 
The first week of the review was spent getting acquainted with the project documentation 
and the overall structure of the code. During this period, static analysis tools were applied to 
identify potentially troublesome areas. Time was also spent to manually identify modules 
implementing core cryptographic functionalities, as this was not explicitly described in the 
project description or documentation.  

The latter phase of the project consisted of the source code review itself, in which the code 
has been reviewed package by package, and the findings (whether positive or negative) have 
been documented in this report. 

2.2 Project execution 
During the initial phases of the assignment, it quickly became clear that the scope of the 
review would be far greater than the estimated “3-5000 lines” of source code that was 
indicated in advance of the project start. In fact, looking at two of the core cryptographic 
packages, com.scytl.evote.protocol.ciphers and .signers, they comprise by 
themselves 3000 lines of actual Java code (after discounting the licence header, blank lines, 
and comments), and more than 5500 lines in total. Furthermore, this is only a small portion 
of the code that has been covered by this review. As a consequence, the evaluation has taken 
somewhat more time than initially estimated. It has also not been possible to have closer 
look at how the different primitives are composed in the high-level protocols, such as 
authentication, given the time available. 

During the review, representatives from Scytl have been available for questions and 
clarifications. In particular, Sandra Guasch has served as a main technical contact, and she 

                                                        
1 https://www.owasp.org/index.php/OWASP_Code_Review_Guide_Table_of_Contents  
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has given consistently rapid and helpful responses to technical questions, both to clarify 
ambiguities and judge the impact of potential findings. The overall impression of Scytl has 
been very positive in this respect. 

The project has been particularly challenging to carry out, both because of a tight time 
schedule, high workload, and unusually high complexity of the systems under review. 
However, the report is still able to cover a lot of ground, and should serve as valuable input 
for those working to improve the system. 

2.3 Areas not covered 
Cryptography is pervasive in the Internet voting source code – to such an extent that it 
would be utterly infeasible to give every application of cryptographic techniques a full review 
in the time allotted. Because of this, the central focus for this review has been the low-level 
implementation and “core” functionality, rather than trying to find and check every place a 
crypto interface is used by application logic. 

As discussed with Christian Bull at the initial project meeting, the new Javascript client 
implementation is outside the scope for this review. Our understanding is that this is because 
the client is not considered to be trusted – voters should be able to detect a cheating or 
malfunctioning client by verifying that return codes are correctly received. In parallel with 
this project, a separate security test of the web application has also been carried out. 

The Internet voting source repository contains significant amounts of code that is not used in 
the production system – proof-of-concept code, legacy code that is no longer used, code used 
for unit and integration testing, free-standing command line verification tools, and so forth. 
Where we have been able to verify that the code is not part of the production system, we have 
not looked at it in detail. It is, however, important to ensure that e.g. insecure test code is not 
used in production by mistake or misconfiguration. 

The security of third-party libraries, such as BouncyCastle, has not been reviewed. However, 
looking only at the dependency, it is worth noting that the BouncyCastle packages used are 
versions 1.44 / 1.45, whereas the latest release is 1.49. Similarly, spring-security-core 3.0.0 is 
used, while the newest stable versions are 3.0.8 and 3.1.14. There is a known security flaw in 
versions of spring-security-core prior to 3.0.52, though it is unclear if this flaw can be applied 
to attack the Internet voting system.  

Third-party dependencies that are not security libraries have not been examined at all. As a 
rule, our clear recommendation is to keep third-party libraries patched to their latest stable 
versions, whenever this is feasible. 

 

 
  

                                                        
2 CVE-2011-2894, see e.g. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2894  
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3 Source code review of Norway’s electronic voting system 

3.1 Structure of the review 
The analysis consists of two main parts: a short description of the e-voting source code and 
general impressions, and a review of low-level cryptographic functionality and its basic usage 
implementing core election processes. 

Java source and class names are formatted using a fixed-width font, and classes are 
referred to by package name, rather than by file path. Class names are generally (but not 
always) unique across packages. 

3.2 Introduction to the e-voting codebase 
The full source code for Internet voting is available to the public, and can be downloaded 
from https://sourcecode.valg.no/websvn/. It consists of 9 main parts: a set of tools for build 
and deployment, two supporting libraries, and six main projects. In total, the code base 
contains roughly 350 Java packages and 2200 classes. 

Table 1 below indicates the different projects, and gives an estimate of their relative sizes, 
measured in the number of lines of code (LoC). The estimate does not count configuration 
files, unit tests, or third-party libraries. It also omits the size of comments and blank lines. 

Project Version Purpose  Approx. size 

parent-config 2.3.1 Scytl build configuration, no code - 

jbasis-parent 2.8.9 Supporting library implementing ”basic java” functionality, 
including cryptographic interfaces 

24 000 LoC 

secure-logger 2.0.6 Supporting library for secure logging 4 500 LoC 

auditing 3.2.4 Auditing module 5 750 LoC 

authentication 3.2.4 Authentication module 11 250 LoC 

counting 3.2.4 Ballot counting 38 000 LoC 

evoting 3.2.4 e-voting application 25 250 LoC 

protocol 3.2.5 e-voting cryptographic protocol algorithms 34 500 LoC 

vsframework 3.2.4 Voting system framework 68 250 LoC 

TOTAL   211 500 LoC 
Table 1. Overview of e-voting codebase 

As we can see, this is a rather large project. It should be noted that the above numbers do 
include “dead” and unused code, proof-of-concept code, and various free-standing utilities 
that are not part of production code as such. This is because these still remain as part of the 
code base, and often not readily identifiable. One may also argue that the line count is a fairly 
rough size metric, though it does give some indication of the overall complexity. 
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Of the different modules, much of the cryptographic code is concentrated in the jbasis-
parent and protocol projects, and this is where most of the report’s attention will be 
focused. 

3.3 General impressions 
Internet voting is a large and complex topic, and as such the implementation has much in 
common with other large and complex enterprise software implementations. What makes 
the e-voting project unique is the pervasiveness of cryptographic techniques. Large-scale 
software engineering is challenging in itself, and it is unsurprising that large-scale 
cryptographic engineering is harder still. 

In fact, one of the most striking observations from this review is to which extent the source 
code looks a lot like an average large enterprise software implementation, in terms of code 
quality, documentation, fragility, consistency and so forth. Perhaps this is a natural 
consequence of the scale of the project, yet perhaps also a sign that the focus on software 
quality might be expected to have been stronger, in a project touches the core of our 
democratic society. 

As projects grow large, a certain amount of discipline and management is needed to keep the 
complexity under control and the project on track. This is self-evident for measurable 
quantities such as time and cost, but perhaps less obvious with respect to an intangible 
concept like “software quality”. Yet establishing a structured approach to quality engineering 
and continuous improvement throughout the development lifecycle can yield clear benefits, 
particularly if started at an early stage and with strong management support. 

From reviewing the e-voting source code, one gets the impression that many common 
practices of reliable and robust software engineering may have been lacking at some point in 
the development process, leading to significant technical debt. This may have been a 
question of time, of cost, or of priorities, and there may also be historical reasons that 
explain it. In the experience of the author, it is often also a question of culture. 

General-purpose quality management frameworks (such as CMMI, ISO 9001, and TQM) 
tend to focus on high-level processes and documentation, rather than prescribing specific 
techniques or measuring compliance with those processes. Industry standards can be 
somewhat more specific; the PCI standards for applications handling credit card data 
specifically mandate formal code reviews, documented secure coding guidelines, and the 
removal of test data and passwords prior to release. 

Well-proven techniques such as test-driven development, mandatory code reviews, static 
analysis, refactoring, use of checklists, and standards for documentation and code can all 
yield tangible quality benefits, not least with respect to non-functional aspects such as 
reliability, verifiability, readability, maintainability, extensibility, and other “-ilities”. Some 
of these techniques may already be in use by the project, others may be less relevant, either 
way one should consider how current processes can be improved. 

At the end of the day, quality engineering is a means to an end, and the goal should be to 
establish a project culture for delivering well-engineered high-quality software, rather than 
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adding an extra layer of bureaucracy by implementing some particular quality assurance 
framework for its own sake. 

Within the field of security, there is a common saying that there exist only two kinds of 
software systems: those simple enough to be “obviously secure”, and those complex enough 
to be “not obviously insecure”. Secure electronic voting may be so inherently complex, that a 
fully implemented system will always fall in the latter category. Yet there is little doubt that 
the current system could be made less complex, and that this would both reduce bugs, 
improve verifiability, and lower the barriers of entry for the members of the public wishing 
to inspect, review, and analyse the system. 

3.3.1 Documentation 

The electronic voting project has published a lot of excellent high-level documentation, 
covering architecture, voting processes, cryptography, and so forth. This is available at 
https://brukerveiledning.valg.no/Dokumentasjon/default.aspx. In contrast, we found the 
low-level documentation of source code to be somewhat thin on the ground. This started 
with unsuccessfully trying to compile the source code according to the supplied build guide3, 
and the little source code documentation that exists did not always serve to clarify the 
purpose and requirements of a particular package, method or class. 

A key challenge for someone outside the project trying to understand the code, is that while 
there are several diagrams showing the architecture logical relationships between the 
different election actors (VCS, RCG, et al.) and election processes, it is not really self-evident 
how they relate to the actual source code, and how the different source code modules relate 
to each other. This is compounded by the fact that most source code comments and Javadoc 
are quite thin, and generally focus on what the code does, rather than how it fits into the 
overall architecture and processes. 

For example, there are a large amount of interdependencies between the evoting, counting 
and vsframework modules, and all of them build on classes from the protocol module. Yet it 
has not been possible to find any kind of documentation defining the logical relationships 
between the different projects, and how they are split. 

Better documentation could be expected to simplify further development, maintenance and 
refactoring of the system, and might also help promote code reuse. In addition to this, 
mnemonic believes that improving the state of the source code documentation would be 
likely to advance the stated project goal of transparency by making it somewhat easier for 
members of the public to understand and review the code. 

An additional challenge observed during the review is that there is often a lack of clear 
distinction between classes that are live production code, and classes that are legacy 
remnants, proof of concept code, or part of a test harness. In a number of places, the review 

                                                        
3 Downloading the source code and dependency tarballs and following 
https://brukerveiledning.valg.no/Dokumentasjon/Dokumentasjon/Build_guide_V0.5.pdf was not 
initially successful; additional manual configuration of the Maven build tool was required 
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has found code that uses insecure settings, but after some investigation does not appear to be 
part of the “live” election system. 

As a final example, consider the two classes CredentialsGenerator and 
CredentialsGeneratorJCE, which can be found in the  
com.scytl.evote.protocol.integration.voting.impl package. The classes are nearly 
identical, defining the same methods, and containing the same comments. Neither class is a 
subclass of the other. The following comment is the only overall description of what the 
classes do: 

/** 
 * Cryptographic component used to generate the voter credentials. 
 */ 

To someone who is not closely familiar with the entire code base, several immediate 
questions are raised: 

• Why are the classes different? 
• What are the technical differences? 
• When are they used? 
• Where are they used? 
• Which voter credentials are we talking about? 

A bit of investigation indicates that the CredentialsGenerator class is used by the 
cleansing classes in the counting module, as well as by the evoting module, while 
CredentialsGeneratorJCE is used by the administrative interface in vsframework to 
generate a voter’s individual keys. However, without access to additional low-level 
documentation, it is quite time-consuming to understand fully the place of these classes, and 
their relationship with each other. 

 

Recommendation. 

• Create or improve low-level documentation, describing the relationships between the 
source code packages, and how they are fit into the overall system architecture 

 

3.3.2 Security levels and encapsulation 
From a cryptographic point of view, there would be few things nicer to review than code 
using standard algorithms and primitives with internally consistent defaults, exposed via a 
common high-level API. Ideally, most regular application code should not be required to 
manage keys and other cryptographic objects; quoting the security expert Thomas H. Ptacek, 
“if you’re typing the letters A-E-S into your code, you’re doing it wrong”. 

The point being made by Ptacek is that the implementation and use of cryptography is 
extremely difficult to get right, and that software developers should not be required or 
expected to have that kind of specific domain knowledge. Software produced is likely to be 
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much safer if cryptographic functionality is systematically delegated to a (carefully reviewed 
and tested) library with a simple API and secure default settings. 

The Internet voting system uses a large number of different cryptographic algorithms and 
parameters, and they are used pervasively throughout much of the code base. Algorithm 
names (such as AES or SHA256) tend to be hardcoded into each class, and the (sometimes 
inconsistent) choices made lead to somewhat variable security levels45. Looking at specific 
algorithms, the general picture is as follows: 

• Asymmetric algorithms such as RSA and El Gamal are consistently specified with 
2048 bit keys. These are roughly equivalent to 112-bit security. 

• For symmetric encryption, the Advanced Encryption Standard (AES) is preferred, 
and used both with 128 and 256 bit keys (usually the latter). This provides 128 and 
256 bits of security against brute force attack. Triple-DES (3-DES, DESede) is used as 
a legacy replacement for AES in a few places. This uses a 192 bit key, but provides 
only about 112 bits of security due to a meet-in-the-middle attack. 

• As a secure hash function, SHA-256 is generally used. This provides 128 bits of 
security against collision (if an attacker can control parts of the input data), and 256 
bits otherwise. However, SHA-512 is used in a couple of places, providing twice the 
security level. There is also one place in the code where MD5 is used, which seems 
inadvisable, as it is not considered secure. 

• As a message authentication code, HMACSHA256 is generally used. This provides 
256 bit security against forgery. 

• Random 100-bit passwords are generated in a few places, particularly to protect 
PKCS #12 keystores. The password hashing used with PKCS #12 is expected to be 
sufficiently slow, that this will provide roughly 128 bits of security; a brute force 
attack on these password does not appear to be any easier than factoring the RSA 
keys. 

Cryptographic controls are typically bypassed, and not broken outright. However, it is 
interesting to note that the “weakest” cryptographic components are actually the public RSA 
and El Gamal keys, which are used heavily in the core voting protocol. Though 112 bits is 
thought to be infeasible to break with today’s algorithms and computers, and thus secure, it 
provides a rather slim security margin if improved attacks are discovered. 

In the first half of 2013, there have been announced several significant theoretical advances 
on solving the discrete logarithm problem in certain group structures, via improvements to 
the index calculus algorithm. This is the mathematical foundation underpinning the security 
of Diffie-Hellman and El Gamal, and is also quite closely related to the security of RSA. The 

                                                        
4 For a good meta-survey of studies comparing the effective key lengths of different cryptographic 
algorithms, see http://www.keylength.com/ 
5 The security level of a cryptographic algorithm is usually specified in bits, with the phrase “k-bit” 

security indicating that the cost needed to defeat the security is on the order of 2k computations 
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new results have been published in a series of research papers by Antoine Joux, Razvan 
Barbalescu, and others6. 

These developments currently only apply to groups of low characteristic, which are not used 
by the e-voting system. However, there is a distinct (though small) possibility that better 
algorithms for breaking Diffie-Hellman in Zp may also be forthcoming. If this were to 
happen, it may become necessary to quickly move to significantly longer keys, or from 
groups over Zp to elliptic curve groups, to maintain security. However, the latter would 
require significant changes to the current e-voting implementation. 

 

Recommendations. 

• Review algorithm choices, to ensure that appropriate security levels are used 
• Ensure agility, e.g. that cryptographic primitives are parametrised and can be 

replaced with reasonable effort if necessary 

 

3.3.3 Code duplication 
Inconsistency also manifests itself in the fact that the same algorithms are not defined in one 
place, but specified repeatedly. This can both lead to subtle bugs and inconsistencies, and 
make it harder to modify the code later on, for instance to replace a cryptographic primitive. 

The hard-coded string “SHA256” appears in nearly 40 different classes, but in a few places 
SHA512 is used instead. Decryption interfaces using the RSA algorithm is implemented in at 
least four different places (jbasis, protocol, com.scytl.crypto, and in the auditing framework), 
and six different Base64 libraries are referenced (four from third party libraries, one in 
jbasis, and one in secure logger; the latter two are versions 2.3.1 and 2.1.1 of the same open-
source implementation). 

Finally, in the com.scytl.evote.protocol.signers package, five different variants of 
Schnorr signatures can be found, with a high degree of overlap.  In principle, a Schnorr 
signature is a rather simple mathematical object, defined through four external parameters; 
an El Gamal group (defined in our case by two primes p and q, and a generator element g), a 
private key (represented as a single integer), data to be signed serialized in a canonical 
format (e.g. as an octet stream), and a source of randomness. 

Instead, the different signature variants implemented contain significant duplication of code, 
but different external interfaces, and different semantic assumptions on what type of data 
the input represents. 

 

DecryptionPrivateKeySigner: 

                                                        
6 The most recent paper, by Barbulescu, Gaudry, Joux and Thomé: ”A quasi-polynomial algorithm for 

discrete logarithm in finite fields of small characteristic”, http://arxiv.org/abs/1306.4244  
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public SchnorrSignature sign( 
final BigInteger[] privateKeys, 

            final ElGamalEncryptionValues encVoteOptValues, 
            final BigInteger[] decVoteOptIDs, 

final BigInteger[] publicKeys) 
 
PartialDecryptionExponentSigner: 

public SchnorrSignature sign( 
final SecretVoterExponent secVoterExp, 
final ElGamalEncryptionValues encVoteOptValues, 
final PartialReEncryptionParameters partReEncVoteOptIDs, 
final PublicVoterParameter pubVoterParam, 
final BigInteger svcID 
final CryptoFactory cryptoFactory) 

 
PartialDecryptionPrivateKeySigner: 

public SchnorrSignature sign( 
final BigInteger[] partReEncPrivKeys, 
final PartialReEncryptionParameters partReEncVoteOptIDs, 
final BigInteger[] partReEncPubKeys, 
final BigInteger svcID, 
final CryptoFactory cryptoFactory) 

 
 
ReEncryptionFactorSigner: 

public SchnorrSignature sign( 
final BigInteger[] reEncExponents, 
final ElGamalEncryptionValues[] encVoteOptValues, 
final ElGamalEncryptionValues[] reEncVoteOptValues, 
final BigInteger[] publicKeys) 

 
VoteOptionSigner: 

public SchnorrSignature sign( 
final EncryptionExponent exponent, 
final ElGamalEncryptionValues encVoteOptValues, 
final BigInteger[] publicKeys, 
final BigInteger voterID) 

Table 2. Schnorr signature variants in the signer package 

The result of this is five different classes that implement the whole Schnorr primitive, 
containing a large amount of partly duplicated code. From both a maintainability and 
auditability point of view, it would probably be better to have one “core” Schnorr 
implementation containing the cryptographic code, and smaller adapters (as required) that 
encapsulate the various business logic surrounding it, such as whether it is a vote option or a 
partial decryption exponent that should be signed. 
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Recommendations. 

• Identify security functionality implemented in multiple places, and consolidate / 
refactor the affected code 

• Consider increased separation between cryptographic logic and application / protocol 
logic, to simplify validation  

 

3.3.4 Dead code 
The difficulty of distinguishing “live” production code from other artifacts in the source code 
repository has previously been alluded to, and it is appropriate to give some examples of 
code in the main source code repository which is actually not used in production. 

That some of the code in jbasis library is unused by the e-voting code is perhaps not 
unreasonable, since it is shared between multiple projects. There are however plenty of other 
examples of unused code. Perhaps the most obvious are the settlement packages in the 
counting project, as this is not handled as part of Internet voting. 

A more tricky example is all code which was used exclusively by the Java voting client 
(running in the browser), since this has later been replaced with a Javascript 
implementation. This probably includes parts of the cryptographic code in the protocol 
project, but it can be difficult to tell which parts. 

It can also be quite difficult to distinguish classes that are part of test harnesses for specific 
environments (e.g. system and integration testing), and which contain actual production 
code. A rule of thumb is that the former contain hard-coded configuration, but this is not 
always clear cut. A particularly odd instance is the HardcodedElectionManagementService 
class, which contains several test passwords, but is also inherited from by the production 
class, RemoteElectionManagementServiceImpl. 

There are also a number of free-standing tools and utilities that appear not to be for use in 
the production environment, but these are fairly simple to identify. This category includes 
the tpm-central-tool in the auditing project, and the cast-vote-robot-tool in 
vsframework. 

Finally, there are a few places where unimplemented or buggy functionality is simply 
commented out, or otherwise disabled, often making the remaining code redundant. This is 
particularly common in jbasis, but also occurs elsewhere. 

 

Recommendations. 

• Indicate more clearly whether code is to be used in test or production, e.g. via 
Javadoc 

• Remove unused code from the main repository 
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3.4 Automated testing 
An early step taken to get better acquainted with the code base, was by running automated 
tools for static analysis. In particular, FindBugs7 with the “Find Security Bugs”-plugin, as 
well as PMD8, were used. These are freely available tools that are simple to set up and run, 
which use heuristic techniques to discover possible or probable code errors. While this type 
of general source code review in general is beside the scope of this audit, it has been a useful 
technique to discover possible problem areas and catch low-hanging fruit. In particular, 
FindBugs has been quite helpful. 

Using an hour to run FindBugs revealed a surprisingly large number of “hits”, i.e. possible 
bugs in the code. While many of these are almost certainly false alerts, and some are minor 
errors that have no impact on correctness or security, there are also apparent bugs that may 
have greater consequences. An example of code that was flagged by FindBugs is the following 
snippet: 

 

com.scytl.evote.auditing.asyslog.SecureSyslogAppender#initialize(): 
byte[] lastEncSessionKey = null; 
SecretKey secretKey = null; 
PrivateKey userPrivateKey = cf.getUserPrivateKey(_pkcs12Certificate,  

_pkcs12Password.toCharArray()); 
if (lastEncSessionKey != null) { … code omitted … } 
final LoggingEventProcessorList loggingEventProcessor = 
    LoggingEventSyslogProcessorListFactory 
        .createLoggingEventProcessorList( 
            cf.getUserPublicKey(_pkcs12Certificate), 
            userPrivateKey, _numberLogLines, this, 
            _timerLogMilliseconds, secretKey); 

Table 3. Example of code flagged by FindBugs: strange handling of null values in code 

The reader may note that lastEncSessionKey always will be null when it is checked, so the 
if-clause looks unlikely to execute. Because of this, the secretKey parameter will remain 
unset until it is passed as an argument to createLoggingEventProcessorList()9. What 
the developer actually intends to happen is hard to understand from the code, at least in 
isolation. 

Another useful set of findings came from the “Find Security Bugs” plugin, which among 
other things looks for insecure sockets, old cryptographic algorithms, and weak random 
number generator. Most of the time, java.security.SecureRandom is used to provide 
strong randomness, but there are a number of places where it is not. 

                                                        
7 http://findbugs.sourceforge.net/ and http://h3xstream.github.io/find-sec-bugs/  
8 http://pmd.sourceforge.net/  
9 It appears that this parameter may not actually be used for anything by the 
createLoggingEventProcessorList method. 



Source code review of Norway’s electronic voting system  mnemonic as 

...................................................................................................................................................................... 

 Page 19 

 

com.scytl.evote.protocol.integration.voting.RCGCrypto: 
public RCGCrypto(final CryptoProvider cryptoProvider, 
        final ElectionManagementService kms) { 
    super(cryptoProvider, kms); 
    _random = new Random(new Date().getTime()); 
    _rcManager = new ReturnCodeManager(); 
} 

Table 4. Example code flagged by Find Security Bugs plugin: why is a "Crypto" class using an insecure random 
generator? 

In this case, it is not immediately clear why the Return Code Generator crypto class should 
be using an insecure random number generator. It has thus been looked into more closely, 
with the analysis being presented in 0 and 4.2.6.2. 

Some of the error categories that recur frequently in the FindBugs reports are the following: 

1. Code paths that (may) allow a parameter to be null when evaluated, causing a 
nullPointerException if it occurs. Manual analysis on a case-by-case basis is 
needed to judge whether this will happen in practice, and whether this may impact 
the correctness or security of the code. 

2. Direct conversions between String and byte[] that don’t take encoding into 
account. This will usually be fine as long as the locale and encoding is fixed (e.g. when 
exchanging data between different systems), but may otherwise cause strange 
compatibility errors. There may also be impacts relating to how data is processed 
(e.g. whether multi-byte characters are fully processed as input to a hash). We 
observe that a few conversions are locale-aware, but that most are not. 

3. Matters concerning thread safety, synchronization, and methods that manipulate 
static objects. 

4. Situations where references to internal objects are exposed, or references to external 
objects are used in protected contexts. 

5. Dead code, and other “strange” code constructs which may not work as intended. 
6. Return values from certain system calls, notably methods such as 

java.io.File#delete, are sometimes unchecked. These calls do not throw 
exceptions if they fail, and may thus fail silently. 

It is highly recommended to use static analysis tools (whether open-source or commercial) 
as an integrated part of the general quality control regime in the e-voting project. This works 
as a good supplement to regular unit testing, and can be integrated in the build process in a 
similar way. More than one tool can be used in tandem, as they often implement different 
heuristics and catch different types of flaws. 

Domain-specific static analysis tools may also be helpful for specific purposes, such as 
uncovering security flaws early in the development lifecycle. There exist multiple dedicated 
commercial tools for static security analysis, though they have not been used as part of this 
audit. 
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In a system such as e-voting, which presumably has particularly stringent requirements of 
correctness and overall quality, it seems strange that such simple aids are apparently not in 
use. Static analysis has also been carried out by third-party researchers in the past, yielding 
similar results, which makes it even more surprising that it has not yet been adopted. 

 

Recommendations. 

• Use one or more static analysis tools as an aid to improve code quality 
• Integrate such tools in the regular build and test process 

 

3.5 On random-number generation 
Quoting the American mathematician Robert Coveyou, “Random Number Generation is too 
important to be left to chance”. Indeed, high-quality randomness that is cryptographically 
secure, is of utmost importance for nearly all the other cryptographic algorithms used for 
electronic voting. Because of this, it is an obvious area that an adversary may try to attack. 

The insecure java.util.Random generator is referred to by about a dozen classes in the e-
voting codebase, and all of these have been inspected manually. A few of these occurrences 
are worth a closer mention, though most of the use appears innocuous: 

• com.scytl.evote.protocol.integration.voting.RCGCrypto, as previously 
mentioned, uses an insecurely seeded (and thus predictable) Random instance to 
select which zero knowledge proofs from the VCS to verify. Checking only a fraction 
of the zero-knowledge proofs is acceptable because the probability of successful 
cheating decreases exponentially with the number of votes, and has been analysed 
previously. However, a cheating VCS might try to predict the RCG random seed, in 
order to guess which proofs will be checked. The probability of successful cheating 
will still remain low, but it may be prudent to use a secure random generator here. 

• com.scytl.evote.vsframework.client.commands.kms.PrintVotingCardComman

dsUtil:  An insecure Random instance is used in the generatePrimeNumbers 
method, which, confusingly, generates random nine-digit integers that are not tested 
for primality. This does not seem to have a security impact, but at the very least 
contradicts the method name and source code comments. 

• com.scytl.jbasis.math.BigNumber takes a Random instance which may or may not 
be secure as part of its constructor, and as a parameter to the safePrime method. 
Thus the caller must be responsible for passing an appropriately strong random 
generator at all times; a BigNumber returned from the safePrime method may be 
“safe” in a purely technical sense, yet useless for cryptography. 

• com.scytl.jbasis.util.StringUtils takes a Random instance as input to utility 
methods such as randomString, with the same implications as for the previous class. 

• com.scytl.evote.evoting.votingclient.Randomizer is an insecure randomizer, 
but does not appear to be in use. 
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• com.scytl.evote.protocol.integration.voting.parser.model.EmlElectoral

Model uses an insecure random generator to shuffle the party lists. This is probably 
acceptable; the order of the party lists should be randomly selected, but there does 
not appear to be a secrecy requirement related to this. 

For the rest of the code base, when randomness is needed, java.security.SecureRandom 
is used. This is a good choice. However, we observe that the default constructor for 
SecureRandom is used throughout (with a single exception). 

It does not appear that any settings for the random generator is specified via configuration, 
which means that the actual “Secure Random” generator instance utilized is likely to be 
implementation dependent, with defaults that will vary between platforms and providers. On 
a Linux system, the default provider would normally be expected as Sun’s NativePRNG 
utilizing /dev/urandom as the underlying entropy source, but this is hard to verify when it is 
not specified explicitly. 

 

Recommendations. 

• Review use of insecure pseudorandom generator java.util.Random 
• Make specification of SecureRandom algorithm and provider explicit, through 

SecureRandom#getInstance or via configuration 
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4 Review of low-level security implementation 

This chapter covers technical analysis of low-level security and crypto functionality in the e-
voting system. Much of the basic functionality is implemented by Scytl in the 
com.scytl.jbasis-library, but only some parts of this is used by the Norwegian e-voting 
code. In the e-voting project itself, much of the cryptographic code is located in the 
com.scytl.evote.protocol project. However, there are also a number other classes 
scattered through the other parts of the code base. We also look into the 
com.scytl.slogger (secure logger) library, which is independent of the e-voting code and 
can be evaluated by itself. Finally, we consider how the cryptographic code is used key 
generation. 

4.1 Analysis of com.scytl.jbasis 
The jbasis project consists of 19 packages, implementing basic Java functionality. This covers 
low-level cryptographic interfaces, smart card token handling, XML and utility classes. The 
project appears to be fairly old, and belonging to a common codebase that Scytl utilizes in 
multiple settings, not only for electronic voting in Norway. 

As a result of this, the project contains a significant amount of code that is either retained for 
legacy compatibility, or provides functionality which does not appear to be in use by the e-
voting system. For instance, the classes used to support IAIK as a Java Cryptographic 
Extension (JCE) provider are not relevant to our purposes. We will try to limit our analysis 
to those parts of jbasis that are in use by the Norwegian e-voting system. 

A central part of the jbasis code are the crypto packages, which provide abstract interfaces to 
low-level cryptographic functionality, as well as a concrete instantiation built on the third 
party BouncyCastle library. Flaws in this part of the code may lead to significant and 
pervasive vulnerabilities. 

4.1.1 com.scytl.jbasis.crypto 
The package offers a lot of cryptographic functionality, though mainly in the form of abstract 
interfaces, which are realized in the com.scytl.jbasis.crypto.bc package. However, 
there are also some central definitions here. 

4.1.1.1 CryptoFactory.java	  
CryptoFactory follows the Abstract Factory design pattern and generally only defines the 
interface. However, it also defines a number of constants. 

SYMMETRIC_CIPHER = "DESede/ECB/PKCS5Padding"; 
DESEDE_CBC_SYMMETRIC_CIPHER = "DESede/CBC/PKCS5Padding"; 
AES_SYMMETRIC_CIPHER = "AES/ECB/PKCS5Padding"; 
AES_CBC_SYMMETRIC_CIPHER = "AES/CBC/PKCS5Padding"; 
SIGNATURE_ALGORITHM = "SHA1withRSA"; 
SECRET_KEY_ALGORITHM = "DESede"; 
AES_SECRET_KEY_ALGORITHM = "AES"; 
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PBE_SECRET_KEY_ALGORITHM = "PBEWithMD5AndDES"; 
SECRET_KEY_LENGTH = 24; 
HASH_METHOD = "SHA1"; 
HMAC_HASH_METHOD = "HMACSHA1"; 
KEYPAIR_ALGORITHM = "RSA"; 
PUBLIC_KEY_LENGTH = 2048; 
PUBLIC_KEY_LENGTH_PROPERTY = "jbasis.public.key.length"; 
PBE_ITERATIONS = 100; 
PBE_SALT = {(byte) 0xA9, (byte) 0x9B, (byte) 0xC8, (byte) 0x32, 
(byte) 0x56, (byte) 0x35, (byte) 0xE3, (byte) 0x03 }; 

There are a couple of strange things to take note of here: 

• Triple-DES is used as the default cipher, while AES (Advanced Encryption Standard) 
must be specified explicitly. Because the default mode is ECB (electronic codebook), 
a different mode must be specified if one wants to encrypt more than one block of 
data (64 bits with 3-DES, 128 bits with AES). 

• The default settings for password-based encryption, specified by the parameters 
PBE_SECRET_KEY_ALGORITHM, PBE_ITERATIONS and PBE_SALT, are not 
secure. Investigation indicates that these PBE settings are not actually used by the 
Norwegian e-voting system, but it may be a concern for other users of the library. 

The implication of these defaults is that unsuitable cryptographic parameters may be chosen 
when a CryptoFactory is used directly with default settings. Motivation for these parameter 
choices appears to be backwards compatibility. This seems somewhat fragile, as a developer 
using the jbasis library will have to consistently specify appropriate algorithms, rather than 
using secure defaults. 

While it does not seem like these defaults are used to a significant extent by the e-voting 
code, we shall keep it in mind when we look at the library usage moving forward. 

4.1.1.2 Other	  classes	  
Most of the package just provides the generic interfaces, but there are a few other classes 
with actual content. 

• AsymetricKeySize [sic] defines the constants KEY_SIZE_1024 and KEY_SIZE_2048. 
• CA.java encapsulates basic Certification Authority behaviour, and is used to handle 

certification requests. Certificates are issued with serial numbers generated with 
java.util.Random, which means that these are potentially predictable. This is not a 
problem. 

• CryptoEncoding converts between DER encoding and PEM format. 
• CryptoUtils contains two methods to compare public and private keys, even if the 

keys are issued by different crypto providers. These only check that the (RSA) 
exponent and modulus are equal, and will not work with other ciphers. It also 
contains a method for signature verification (which does not appear to be in use) and 
the skeleton of a method for hashing all the files in a directory (which is not 
implemented). 
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All of this seems reasonable. Other classes in the package are either simple interface 
definitions, or do not appear to be in use by Norwegian e-voting. The latter category includes 
the classes CryptoVerifier, FastBitCommittment, FastBitCommitmentVerifier, and 
HashAdapter. 

4.1.2 com.scytl.jbasis.crypto.bc 

This package contains an actual crypto instantiation, using the BouncyCastle JCE provider. 
External entry points are primarily through BCCryptoFactory, BCPrivateKey, 
BCPublicKey, and BCSecretKey. 

4.1.2.1 BCCryptoFactory 

The BCCryptoFactory class is just a very thin wrapper around the other BC-classes, which 
instantiates these as needed. For secure random number generation it uses a private final 
instance of java.security.SecureRandom. This behavior generally seems secure. 

Note that the methods createSecretKeyFactory and createSecretKeyWithPassword will 
create password-based encryption schemes with the insecure PBE defaults from the base 
CryptoFactory class. 

4.1.2.2 BCPrivateKey	  and	  BCPublicKey	  
The BCPrivateKey class implements an RSA private key object, with a straightforward 
constructor (based on a modulus and a private exponent) and utility classes. There are also 
methods for reconstructing a BCPrivateKey object based on an input stream or a byte array, 
but these are heavily commented out. Comments indicate that this code may not be stable, 
and it appears not to be in use.  

The corresponding BCPublicKey class contains the same functionality, but for public RSA 
keys instead. 

4.1.2.3 BCSecretKey	  
The BCSecretKey class provides various ways to produce a secret key object. The essential 
thing to note here is that calling BCSecretKey without any arguments will generate keys 
suitable for the default algorithm, which is triple-DES (“DESede”). 

Thus it is necessary to keep an eye on how these are initiated. Providing a KeySpec or a 
SecretKeySpec as input will be necessary to get keys that are suitable for e.g. AES. 

4.1.2.4 Other	  classes	  
The remainder of the classes mainly implement their generic interfaces by acting as 
wrappers for the BouncyCastle JCE provider. 

Going through the interfaces class by class it can be easy to overlook errors. Most of the 
interfaces with BouncyCastle appear to be correct. However, we did observe one bug in the 
BCPKCS7Envelope class, which makes the following incorrect call to the provider: 
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CMSEnvelopedDataGenerator.generate(new CMSProcessableByteArray(data),  
CMSEnvelopedDataGenerator.DES_EDE3_CBC, 128, "BC"); 

   

Bug. 

The org.bouncycastle.cms.CMSEnvelopedDataGenerator class provides the following 
method signature: 

generate(CMSProcessable content, java.lang.String encryptionOID,  
int keySize, java.lang.String provider)  

However, triple-DES must be used a 192 bit key. 

 

4.1.3 com.scytl.jbasis.math 

The math package contains the BigNumber class, along with smaller supporting classes for 
polynomial evaluation and modular computation. This is used in connection with Shamir 
Secret Sharing (see Error! Reference source not found.). 

4.1.3.1 BigNumber	  4.1.3.1 BigNumber	  
The BigNumber class is a decorator wrapping a regular BigInteger, with a few extra 
methods to support modular polynomial arithmetic. We shall comment on those features 
which are actual extensions. 

• The value PRIME_CONFIDENCE = 100 indicates that probable primes should have a 
probability of at least 1 – 2100 of  actually being prime. This is consistent with the 
default settings for BigInteger.probablePrime(). 

• The constructor BigNumber(final long bitLength, final Random rnd) casts 
bitLength from long to int, truncating in the process. This seems unlikely to be a 
problem, as actual bit lengths are not expected to exceed a few thousand. 

• The higherPrime() method works by generating a strong random prime of the same 
order of magnitude as the input, adding it to the input value, and finally searching for 
the next higher prime. This appears to be a secure approach, as it avoids any obvious 
correlation with the starting value. 

• The modPowAlt() and modPowCrt() methods attempt to provide optimized 
replacements for BigInteger.modPow(), that is to say, efficient methods of 
computing the expression “xy modulo n”.  Note that Chinese Remainder Theorem-
based exponentiation may leak information about the factorization of an underlying 
RSA modulus, through the time it takes to execute. 

• The safePrime() method computes a prime p = 2q+1 such that p and q are both 
prime. 

The class appears secure, provided that SecureRandom is used as a generator whenever a 
secure BigNumber is needed. This is only done explicitly in the higherPrime() method; 
in other cases a Random object is passed as a parameter. Care should also be taken with 
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using the custom exponentiation methods, though these are apparently not in use by the 
Norwegian e-voting project. 

4.1.4 com.scytl.jbasis.shares 

The shares package implements Shamir’s Secret Sharing algorithm10, along with associated 
helper classes for persisting shares. The idea behind the algorithm is to represent a secret 
string as a random (k-1)’th degree polynomial over a finite field, and distribute n shares 
representing points. Given threshold knowledge of k unique points, the polynomial (and thus 
the secret) can be reconstructed by interpolation, whereas k-1 shares will yield no 
information at all. 

The com.scytl.jbasis.eraser package is used extensively to ensure that garbage 
collection is performed whenever secret data should be erased from memory. This is a 
somewhat arcane topic, and we have not performed a detailed analysis of the garbage 
collection scheme itself. However, while the Eraser class is used extensively throughout the 
electronic voting system, the impression is that it may not be used consistently. 

The high-level interface for the package is ShareAlgorithm, which is implemented by 
ShamirAlgorithm. The ShareManager class is used as a bridge between the Shamir scheme, 
and a variety of connectors for securely persisting the shares, e.g. to a deck of smart cards.  

4.1.4.1 ShamirAlgorithm	  
The high level Shamir algorithm implementation is fairly straightforward. The two main 
methods are split and merge, which interface with ShamirShadowManager to do the actual 
work. 

split: String secret, int shares, int threshold, (optional int modulus) 
1. Encode the secret as a BigNumber 
2. Set up a new ShamirShadowManager for the parameters. 
3. Invoke ShamirShadowManager.marshall() 
4. Return a Vector of shares 

recover: Vector shares 
1. Set up a new ShamirShadowManager to recompute the secret 
2. Invoke the getter method secret() to recover the actual value 
3. Convert it back to a String 

There is also a merge method, which combines two (presumably sub-threshold) vectors of 
shares into a single vector. 

4.1.4.2 ShamirShadowManager	  
The ShamirShadowManager class is used to implement the actual secret splitting and 
merging. We consider the two processes in turn. 

ShamirShadowManager: constructor (splitting): 
1. Check the input parameters (shares, threshold, modulus if present)  

                                                        
10 Invented by Adi Shamir, see http://en.wikipedia.org/wiki/Shamir's_Secret_Sharing 
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2. Generate a random LagrangePolynomial of degree threshold-1 
3. Evaluate the polynomial at 1, 2, … to obtain the share values 

ShamirShadowManager.marshall(): 
1. Iterate through the list of points 
2. Compute the String representation of each share 
3. Output the vector containing all the shares 

Moving on to the process of merging the shares, we have the following pseudocode, which 
looks correct. 

ShamirShadowManager: constructor (merging): 
1. Add each share to the vector containing the points 
2. Verify that all the parameters are consistent 
3. Verify that we have enough shares 
4. Reconstruct the LagrangePolynomial 
5. Evaluate it at 0 to obtain the secret 

 

Vulnerability. 

The code to generate the random Lagrange polynomial in the constructors for splitting 
selects polynomial coefficients from the wrong distribution, which violates the theoretical 
security proof for Shamir Secret Sharing. 

Recall that the polynomial coefficients must be randomly chosen from the set {0, 1, …, 
modulus – 1). In the constructor, the code sets the BigNumber m equal to modulus – 1, and 
proceeds to compute the coefficients as follows: 

From the com.scytl.jbasis.shares.ShamirShadowManager constructor: 
new BigNumber(m.getBitLength(), new SecureRandom(m.toByteArray()))); 

Consider the two methods being called here. 

• The getBitLength() method wraps BigInteger.bitLength(), which (for positive 
values) “Returns the number of bits […] in the ordinary binary representation.” 

• The BigNumber constructor wraps BigInteger (int numBits, Random rnd), 
which “Constructs a randomly generated BigInteger, uniformly distributed over the 
range 0 to (2numBits - 1), inclusive”. 

To see why the code is incorrect, assume for example that the prime modulus is 19, which 
means that coefficients should be selected uniformly at random from the range [0, 18]. The 
value of m is 18 and the m.getBitLength will be 5. However, the random BigNumber 
coefficient that is subsequently generated will be uniformly selected from the range [0, 31] 
(e.g. 25-1). 

The polynomial mathematics classes will perform the requisite reductions (mod 19), 
meaning that the subsequent computations will be correct despite coefficients being out of 
range. However, the bug means that the Shamir polynomial coefficients will be selected from 
the wrong statistical distribution, that is no longer uniform. 

Impact and recommendation. 
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It looks as though this bug will cause the theoretical security proof for Shamir’s Secret 
Sharing scheme to fail. Initial analysis indicates that practical exploitation of the issue is 
expected to be hard, but could conceivably be attempted by an adversary with access to 
several shares (yet fewer than the threshold). We have not had time to perform a detailed 
impact analysis. 

The issue has been communicated to Scytl, who have acknowledged the finding as a bug. 

4.1.4.3 Low-‐level	  persistence	  classes	  
The ShareManager class works as a link between the secret sharing implementation, and the 
low-level routines for persisting the shares. These include SCConnection and 
SCConnector11, which define the interfaces, and the supporting utility classes 
ConnectionType and ConnectorOptions. There are also specific implementations: 

• FileConnection / FileConnector – for writing to local file 
• TokenConnection / TokenConnector – for writing to an actual smart card 

Writing secret shares to a local file with FileConnection must only be used for testing, as 
this implementation appears to use the insecure default Password-Based Encryption settings 
from the Jbasis crypto package, described in Section 4.1.1.1. There may also be other security 
requirements enforcing that key shares from production must only be persisted to a secure 
storage medium. 

Regarding the token classes, we note that the TokenConnection.readShare and 
writeShare methods use triple-DES (CryptoFactory.SECRET_KEY_ALGORITHM) to encrypt 
data on the tokens, rather than AES. This may not be consistent with e-voting project 
requirements, though it is likely to be secure. 

Apart from this we have not found anything remarkable in these classes. 

4.2 Analysis of com.scytl.evote.protocol 
The protocol-3.2.5 project contains implementations of central cryptographic functionality 
used by the Internet voting protocol. In many cases this is complementary to the jbasis 
crypto code, other times it works as a replacement. The degree of overlap is not clearly 
documented, and when we look at some of the more complex implementations, we shall have 
to keep track of which library is used where. 

4.2.1 com.scytl.evote.protocol.ciphers 

The ciphers package implements five different basic cipher types, an encrypted envelope, 
and a partial decryptor for ElGamal votes. 

4.2.1.1 AsymmetricCipher	  
The AsymmetricCipher class provides basic asymmetric encryption functionality, using as 
default RSA/ECB/PKCS1Padding and the standard SunJCE crypto provider. Alternate 

                                                        
11 SC stands for “Share Card” in this context 
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constructors lets the caller specify the algorithm and/or provider manually. The suitable 
cipher object is retrieved from the JCE provider via Cipher#getInstance. This seems safe, 
provided that PKCS#1 v1.5 RSA encryption is what you want. 

Additional methods are provided to encrypt and decrypt, either byte arrays of serializable 
objects. The implementations of encrypt and decrypt seems reasonably straightforward. 

It is interesting to note that getBlockSize() is called throughout to check whether a block 
cipher is in use, as this should never be the case for a regular asymmetric cipher such as RSA. 
The additional code to handle this case seems to add a bit fair of unnecessary complexity, 
and it is unclear what value it brings. 

It is worth noting that there is also an AsymmetricCipher class in jbasis, and that these may 
easily be confused. 

4.2.1.2 ElGamalCipher	  
The ElGamalCipher12 provides access to the BlockElGamalEngine, which is defined in the 
com.scytl.evote.protocol.engine package. It implements the same mechanisms as 
AsymmetricCipher to encrypt and decrypt either serialized objects or byte streams. 

As opposed to the previous class, the inner encrypt(final byte[] bytes, final 
BigInteger publicKey) and decrypt methods explicitly handle input messages that are 
longer than a single block. 

encrypt: byte[] bytes, BigInteger publicKey: 
1. Obtain input / output block sizes from the BlockElGamalEngine 
2. Compute the number of blocks, and the remaining space 
3. Pad the bytes with zeroes to a block boundary 
4. Use the BlockElGamalEngine to encrypt the blocks one by one 
5. Wrap the encrypted data and the number of zero bytes (remainder) in a 

BlockElGamalEncryptedData object 

decrypt: EncryptedData encData, BigInteger privateKey: 
1. Unwrap the encrypted data and remainder from the input 
2. Obtain the input / output block sizes 
3. Use the BlockElGamalEngine to decrypt the blocks one by one 
4. Output the decrypted byte array 

This seems straightforward, and should maintain confidentiality as long as the core 
BlockElGamalEngine is implemented securely. Note that El Gamal’s encryption scheme 
without a secure padding scheme is malleable; in particular it is not secure if the adversary is 
able to decrypt chosen ciphertexts. Because of this, the algorithm is not suitable for all 
applications. 

4.2.1.3 JCEEnvelope	  
In the JCE terminology, an envelope consists of a message encrypted with a random 
symmetric key, with the key being encrypted with an asymmetric mechanism. This is in the 

                                                        
12 Named after Taher El Gamal, see http://en.wikipedia.org/wiki/ElGamal_encryption  
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style of Cryptographic Message Syntax13. Encryption schemes of this type are also commonly 
referred to as “hybrid encryption”, with the terms “Key Encapsulation Mechanism” (KEM) 
and “Data Encapsulation Mechanism” (DEM) being used in the provable security literature 
to refer to the asymmetric and symmetric components. Several KEM/DEM schemes (with 
KEMs based on e.g. RSA and ElGamal) are standardised in ISO 18033-2.  

The JCEEnvelope class implemented by Scytl builds an envelope using 
AES256/CBC/PKCS5Padding as the data encapsulation mechanism, and a user-supplied 
CryptoFactory which is used to provide an AsymmetricCipher (4.2.1.1) instance for the key 
encapsulation. This uses PKCS #1 v1.5 padding as default; if replaced with OAEP padding 
this the scheme would be similar to the RSAES-KEM defined in ISO 18033-2.  

createEnvelopedData: 
CryptoFactory factory, PublicKey pubkey, byte[] plaintext: 

1. Generate a random secret AES key 
2. Construct a random IV using SecureRandom 
3. Encrypt the plaintext with the AES key 
4. Get an AsymmetricCipher object from the factory 
5. Encrypt the AES key and IV with the AsymmetricCipher and the pubkey 

readEnvelopedData: CryptoFactory factory, PrivateKey pubkey, 
byte[] encKey, byte[] encIv, byte[] encryptedData: 

1. Get an AsymmetricCipher object from the factory 
2. Decrypt the secret AES key 
3. Decrypt the random IV 
4. Decrypt the data 

There are a few features of the JCEEnvelope class that can be contrasted with the standard 
hybrid encryption schemes. 

• It is not necessary to encrypt the random initialization vector, this does not give any 
security benefit. 

• The standardized schemes in ISO 18033-2 schemes use an additional Message 
Authentication Code (MAC) together with the symmetric encryption, to ensure the 
integrity of the symmetric ciphertext. This is an important part of the strong security 
proofs for the hybrid schemes. 

• Using a hybrid construction without a MAC means that the JCEEnvelope will almost 
certainly not satisfy the strong IND-CCA2 notion of security. Using 
AsymmetricCipher default settings, it is likely to satisfy the weaker IND-CPA 
(“semantic security”) notion. 

• Note that the AsymmetricCipher instance is from com.scytl.jbasis.crypto 
(4.1.1) and not the package implementation (4.2.1.1) 

• The security of the enveloped scheme is completely dependent on the externally 
specified factory instance and its AsymmetricCipher instance being securely 
initiated 

                                                        
13 Defined in RFC 3369, based on the earlier PKCS #7 
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One should consider implementing one of the ISO schemes for enveloped data in this 
situation. Adding a MAC would prevent e.g. bit-flipping attacks on the symmetric ciphertext. 

4.2.1.4 MessageCipher	  
The MessageCipher class can be used to encrypt a String with the BlockElGamalEngine. 
The class appears identical to ElGamalCipher, apart from working on a String rather than a 
byte[]. It is unclear why this is implemented as a separate class. 

4.2.1.5 SymmetricCipher	  
The SymmetricCipher class is similar to the AsymmetricCipher class in 4.2.1.1, but using 
AES/CBC/PKCS5Padding and a minimum key length of 128 bits. Again, the code makes 
systematic checks of _cipher.getBlockSize, this time to determine whether it use an 
initialisation vector (IV). 

Since _cipher.getBlockSize will be nonzero whenever a block cipher is used, this does not 
quite make sense. For instance, if a stream cipher were to be specified, getBlockSize should 
be zero, and no IV will be used. This is likely to be insecure, since it seems to imply 
keystream reuse if encrypting multiple times under a fixed key. As far as we can tell, the 
ciphers used by e-voting will all be block ciphers and follow the secure code path. However, 
this once again seems like a very fragile state of affairs. 

4.2.1.6 VoteOptionCipher	  
The VoteOptionCipher class acts as an interface to (re-)encrypt or decrypt a series of vote 
options with El Gamal, using the underlying VoteOptionElGamalEngine (see 4.2.3.2). The 
main feature of this class is that it encrypts a large vector of vote options, using a similarly-
sized vector of public keys, and a fixed secret exponent which is reused for all the options. 

This is a somewhat unusual El Gamal optimization, as it would normally be very dangerous 
to reuse the secret exponents. However, provided that there are no simple algebraic 
relationships between the vote options or public keys, there does not appear to be any 
“trivial” attacks on the scheme. It is assumed that the e-voting project has performed a 
thorough cryptographic analysis before making this protocol optimization. 

Re-encryption is done by multiplying the old ciphertext with another “round” of of El Gamal: 

• phinew = phiold * publicKeyexponent (mod p) 

• gammanew = gammaold * generatorexponent (mod p) 

It is somewhat difficult to consider the security of this computation without looking more 
carefully at the protocol context in which it is used, but there are no obvious weaknesses in 
this. 

4.2.1.7 VoteOptionPartialDecryptor	  
The VoteOptionPartialDecryptor class is used to partially (re-)encrypt or re-decrypt 
encrypted vote options, using the underlying VoteOptionPartialDecryptorEngine class.  
This is a different kind of re-encryption than in the previous sections: 
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• param1 = phioldexponent 

• param2 = gammaoldprivateKey 

• param3 = param1 * param2 

• gammanew = gammaoldexponent 

Once again there are no obvious weaknesses in this computation, but it is somewhat difficult 
to evaluate the security without more careful evaluation of the protocol context in which it is 
used, since it differs from the usual “textbook” El Gamal scheme. 

4.2.2 com.scytl.evote.protocol.digests 

There is only one class in this package, HashFunction. 

4.2.2.1 HashFunction	  
The HashFunction class is a simple implementation to provide access to a cryptographic 
hash function through the JCE provider. By default, SHA-256 is used. This is a good default 
choice for a secure cryptographic hash function. The UTF-8 input encoding is explicitly 
specified when converting the input string to a byte array, meaning that the encoding will be 
consistent across platforms. This seems very reasonable. 

4.2.3 com.scytl.evote.protocol.engine 

The engine package contains three different special-purpose ElGamal implementations. 

4.2.3.1 BlockElGamalEngine	  
The BlockElGamalEngine is conceptually fairly straightforward. It is used to encrypt an 
array of bytes by dividing it into blocks and applying El Gamal encryption to each block. It 
needs to be initialized with a secure El Gamal key, e.g. a triple (p, q, g) where q and p = 2q+1 
are prime, and g is a generator of the group. The following pseudocode is used to encrypt / 
decrypt a single block. 

encryptBlock: byte[] in, int inOff, int inLen, BigInteger publicKey: 
1. Check that the input length is appropriate 
2. Represent the input array as a BigInteger  
3. Generate a random exponent k which is not equal to -1, 0, 1, nor 

greater than the group order p 
4. Compute the ciphertext tuple (gamma, phi) from input, k and publicKey 
5. Convert it back to a byte array and return 

decryptBlock: byte[] in, int inoff, intLen, BigInteger privatekey: 
1. Check that the input length is appropriate 
2. Split the input array in two, and convert to two BigIntegers 
3. Decrypt using the private key and the El Gamal identity 
4. Convert to byte array 
5. Do post-processing (e.g. add leading zeroes) and return 
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This appears correct for encrypting individual blocks, under the usual preconditions for 
secure El Gamal encryption, i.e. as long as an adversary is not able to decrypt chosen 
ciphertexts, and random exponents k are never re-used. 

Since El Gamal is malleable and no chaining mode is defined, there is no implied relation 
between blocks. Unless the integrity of the overall ciphertexts is maintained (using a MAC or 
a signature), an adversary would be free to shuffle, swap or modify blocks in a longer string. 
This may be a potential vulnerability, depending on the usage. 

4.2.3.2 VoteOptionElGamalEngine	  and	  VoteOptionPartialDecryptorEngine	  
The VoteOptionElGamalEngine is used to (re-)encrypt and decrypt vote options. The vote 
options are represented as BigInteger instances, and the class simply performs modular 
arithmetic on these values according to the definition of El Gamal. All parameters (e.g. keys 
and exponents) are passed as external arguments. 

The final engine class, VoteOptionPartialDecryptorEngine, is used for partial encryption 
and decryption of vote options. This is again reasonably straightforward modular arithmetic, 
based on the definition of how the computation should be carried out. 

In both cases, the implementations look straightforward, but usage (accessed via the 
VoteOptionCipher and VoteOptionPartialDecryptor ciphers) should be checked against 
the protocol definitions. 

4.2.4 com.scytl.evote.protocol.generators 

The generators package includes functionality to generate Diffie-Hellman and El Gamal 
keys. 

4.2.4.1 DHKeyGeneratorHelper	  and	  DHParametersHelper	  
This pair of classes contains necessary functionality to produce a Diffie-Hellman key. 

The DHParametersHelper class is used to pick a Diffie-Hellman group. The relevant 
methods are: 

• generateSafePrimes: Find a prime q and safe prime p = 2q+1, of a specified bit 
length and with specified certainty (of the primeness of p and q) 

• selectgenerator: Find a generator g the subgroup of order q 

Both methods appear correct. They use SecureRandom for their entropy. 

Meanwhile, DHKeyGeneratorHelper implements the following methods: 

• calculatePrivate: produces a random private key of specified length 
• calculatePublic: derive the corresponding public key using the 

Once again SecureRandom is used as the random generator. 

4.2.4.2 ElGamalKeyPairGenerator	  and	  ElGamalParametersGenerator	  
This pair of classes uses the aforementioned Diffie-Hellman helpers to produce ElGamal 
keys. The implementations appear to be quite straightforward, without any complex logic. 
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4.2.5 com.scytl.evote.protocol.integration.mixing.base 

The “integration mixing base” implements zero-knowledge proofs for vote mixing, building 
on other protocol classes, including VoteOptionCipher (4.2.1.6) and the various 
SchnorrSignature variants (4.2.9). 

4.2.5.1 ReEncryptionProofs,	  ReEncryptionProofGenerator	  and	  ReEncryptionVerifier	  
These classes are used to represent, generate and verify Schnorr signatures on secret 
exponents that are used for re-encryption at mix-nodes. To generate a proof on a vote group 
collection, each vote group is signed using the secret exponents that were used to re-encrypt 
it, with the ReEncryptionFactorSigner class from the signer package (4.2.9.4). This is 
done for each vote group in the collection. 

4.2.5.2 VoteGroupManager	  
While not implementing much cryptographic functionality as such, the VoteGroupManager 
class is notable for being the only place in the e-voting codebase where the underlying 
random number generation (RNG) algorithm and provider for use with SecureRandom is 
explicitly specified in the source: “SHA1PRNG” and “SUN”.  In all other cases observed, the 
default constructor is used. 

Explicitly specifying the algorithm and provider is actually quite good practice, since it 
ensures that one does not obtain a default value with unexpected properties. For the 
purposes of the shuffling that is done in the class, the choices are perfectly appropriate.  

Indeed, SHA1PRNG is often the default SecureRandom algorithm, particularly on Windows 
machines. 

4.2.5.3 	  VoteMixer	  and	  VoteMixingIOValidator	  
The function of vote mixing is to validate, shuffle and re-encrypt votes as part of a mix 
network. It is perhaps worth noting that a regular AsymmetricSigner (4.2.9.1) is used for 
this purpose, rather than the various El Gamal signers used elsewhere in the package. Re-
encryption is done using the VoteCipher class, and shuffling is done with 
java.util.Collections#shuffle utilizing SecureRandom for strong randomness.  

4.2.6 com.scytl.evote.protocol.integration.voting 
The voting package and its sub-packages contain a fair bit of crypto protocol implementation 
for integration between the different voting components. A central element is the 
ElectionManagementService interface, which specifies 88 (!) core methods for election 
management.  

4.2.6.1 BaseCrypto	  
The BaseCrypto class is a base class that is extended by several of the component-specific 
crypto classes. It contains a number of default methods to verify the integrity of a vote. It 
specifies the use of UTF-8 encoding, and SHA-256 as a hash algorithm. The following 
security-relevant methods are implemented: 
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• verifyEncryptVoteSig checks that the JSON vote data contained in a VoteBean 
object has a valid RSA signature, and that the certificate is consistent with the voter’s 
Common Name, authentication time, and the election identifier. 

• verifyAuthenticationToken uses the Authentication Service certificate to check an 
user’s authentication token. 

• verifyVoteZKProof uses the VoteOptionSigner (4.2.9.6) class to verify a zero-
knowledge proof (Schnorr signature) protecting the vote options contained in an 
encrypted vote. 

• createVoteHash computes a SHA-256 hash over a VoteBean object, an 
authentication token and a timestamp. 

The two first methods use an ElectionManagementService instantiation to perform the 
actual verification. BaseCrypto is extended by the ConfigCrypto, PrinterCrypto, 
RCGCrypto and VCSCrypto classes. The latter two implement additional verification that 
should be analysed. 

4.2.6.2 RCGCrypto	  
The RCGCrypto class contains a few additional crypto methods for the return code generator. 

In the verifyPartialDecryptSig method, the VCS public key is used to verify a (RSA) 
signature from an AsymmetricSigner, on the contents of a PartialDecryptBean. 

The verifyExpZKProof and verifyKeyZKProof methods check (El Gamal) zero-knowledge 
proofs of knowledge on partially decrypted votes from the VCS, made with the 
PartialDecryptionExponentSigner and PartialDecryptionPrivateKeySigner 
respectively. 

The isOptimized method is a simple routine that returns true with 12.5% probability. It is 
used elsewhere to determine whether the two partial decryption ZK proofs shall be verified, 
as an optimisation to reduce the workload on the RCG. Interestingly, the method uses an 
insecure java.math.Random instance initialized using new Date().getTime() as the seed. 
This seems dubious, since it means that the VCS might try to guess the seed to predict which 
ballots will be verified by the RCG, since it can guess when the RCG was rebooted. It is 
unclear how this would affect the security of the protocol, but it would be more conservative 
to use a SecureRandom instance for this purpose. 

The final method of interest is generateReturnCodes. It contains slightly more logic, and is 
worth describing in more detail. 

generateReturnCodes: PartialDecryptBean partialDecrypt, 
VoterIdentifier voterIdentifier, String electionType, 
String electionEventId: 

1. Obtain the RCG symmetric key from the ElectionManagementService 
2. Initialize a VoteOptionPartialDecryptor cipher instance 
3. Use it to partially decrypt the data in the PartialDecryptBean, using 

the RCG’s ElGamal key retrieved from the ElectionManagementService 
4. For each of the partial return codes obtained (that are not empty), 

generate a return code using the partial return code, voter ID and 
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symmetric RCG key 
5. The actual return code generation is performed by the 

com.scytl.evote.protocol.managers.rcmanager.ReturnCode class. It uses 
HMACSHA256 to digest the partial return code and voter ID. 

With the exception of the potentially questionable random numbers generated by the 
isOptimized method, the RCGCrypto class appears to be correct. 

4.2.6.3 VCSCrypto	  
The Vote Collection Server also has a dedicated crypto class, serving as the counterpart of 
RCGCrypto.  Of particular interest is the partiallyDecryptVote method, which is used to 
produce the PartialDecryptBean objects that are processed by the three verification 
methods in RCGCrypto. 

partiallyDecryptVote: VoteBean vote, VoterIdentifier voterIdentifier: 
1. Obtain the VCS symmetric key from the ElectionManagementService 
2. Initialize a VoteOptionPartialDecryptor cipher instance 
3. Generate a secret voter exponent for re-encryption, which is derived 

(via the keyManager) by encrypting the voter ID with the VCS 
symmetric key 

4. Re-encrypt the encrypted votes using the secret voter exponents and 
the concatenation of the VCS ElGamal keys 

5. Generate the corresponding public parameters used for partial 
decryption 

6. Generate the two zero-knowledge proofs, for knowledge of the secret 
voter exponent and the VCS ElGamal private keys 

7. Digitally sign the partially re-encrypted vote and the two zero-
knowledge proofs, using the VCS RSA key. 

8. Wrap everything into a PartialDecryptBean 

There is another variant of the method, partiallyDecryptVoteWithoutSigning, which 
proceeds identically but skips step 7. It does not seem to be in active use. 

The VCSCrypto class contains a large number of other methods, but these appear to perform 
comparatively simple signature and signature verification calls, using the appropriate access 
methods. 

4.2.6.4 ElectionManagementService	  and	  its	  implementations	  
The ElectionManagementService class specifies a central interface collecting all the central 
functions needed to set up an election, and is used extensively by the other classes. 

There is an immediate implementation of the interface in 
HardcodedElectionManagementService containing hard-coded credentials and 
configuration, which can be used directly for testing. The actual implementation used for 
production should be RemoteElectionManagementServiceImpl from the 
com.scytl.evote.evoting.vcscommon.service package. 

However, there is a rather strange class inheritance relationship at work here: the 
RemoteElectionManagementServiceImpl does not only implement the interface general, it 
also extends the HardcodedElectionManagementService class. With the tremendous 
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amount of methods defined, it is somewhat tricky to verify that the “REMSI” 
implementation in fact correctly overrides all those methods that use hard-coded settings, 
and that the methods that are not overridden are all safe. Moreover, there are a few classes 
which explicitly instantiate a Hardcoded service object, including BaseCrypto. 

While there have not been any obvious implementation bugs observed, this state of affairs 
seems unnecessarily tangled and fragile. 

4.2.6.5 CredentialsGeneratorJCE	  
The CredentialsGeneratorJCE class uses the jbasis package to generate a key pair, a 
certificate signing request, and finally a signed certificate in PKCS #12 representation, 
wrapped in a CredentialBeanJCE. This is used to provide a dedicated key pair for each 
voter. 

A Common Name for each voter certificate is computed using a SHA-256 hash of the voter 
ID, which means that they are opaque identifiers, but not secret. The certificates are signed 
using the default algorithm from jbasis, i.e. SHA1withRSA. 

This appears reasonably straightforward. 

4.2.7 com.scytl.evote.protocol.managers.keymanager 
The KeyManager class in this package is used as an invoker to perform all key-related 
operations, i.e. creation, storage and retrieval of any kind of cryptographic key material. It 
does not implement any logic of its own. However, some of the other classes in the package 
do. Much of the content here supplements or replaces that of the jbasis library, and one 
should be careful as to which classes are actually used. 

Many of the classes are simply provider interfaces that define simple defaults and interfaces 
to the underlying providers. In this case we do not give a detailed description of each one, 
but note the relevant default parameters found. 

CertAuth DIGITAL_SIGNATURE_ALGORITHM_DEFAULT = 
"SHA256withRSA"; 

CertificateAuthority SIGNATURE_ALGORITHM = "SHA256withRSA"; 

Certificate 
CertificateSigningRequest 

CERTIFICATE_TYPE = "X509"; 
DIGITAL_SIGNATURE_ALGORITHM_DEFAULT = 
"SHA256withRSA"; 
PROVIDER_NAME_DEFAULT = "SunRsaSign"; 
CHARACTER_ENCODING = "UTF-8"; 

GenerateKeyPair KEY_PAIR_GENERATION_ALGORITHM_DEFAULT = "RSA"; 
KEY_BIT_SIZE_DEFAULT = 2048; 

GenerateSecretKey KEY_GENERATION_ALGORITHM_DEFAULT = "AES"; 
KEY_BIT_SIZE_DEFAULT = 256; 

GenerateKeyStore KEY_STORE_TYPE_DEFAULT = "JCEKS"; 
PROVIDER_NAME_DEFAULT = "SunJCE"; 

PKCS12 PROVIDER_NAME_DEFAULT = "SunJSSE"; 
KEY_STORE_TYPE = "PKCS12"; 
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CHARACTER_ENCODING = "UTF-8"; 

PublicVoterParameter DEFAULT_PROVIDER_NAME = "SunJCE"; 

SecretVoterExponent SYMMETRIC_CIPHER_ALGORITHM = 
"AES/CBC/PKCS5Padding"; 
DEFAULT_PROVIDER_NAME = "SunJCE"; 

SymmetricKey KEY_GENERATION_ALGORITHM_DEFAULT = "AES"; 

In this case, the options selected are reasonably self-consistent, in the sense that secure 
choices of SHA-2, AES and RSA are consistently favoured as default algorithms.  It remains 
inconsistent in the sense that the defaults offer different security levels: 

• AES-256 provides roughly 256 bits of security 
• RSA-2048 offers ~112 bits of security14 against factoring, a similar level as 3-DES 
• SHA-256 offers ~128 bits of security against collisions, a similar level as AES-128 

With the chosen parameters sizes (and the similar choice of 2048-bit keys for El Gamal, 
though this is not specified separately in these classes), the public-key algorithms are likely 
to be the least resistant against brute-force attacks. Given current knowledge, even 112 bits of 
security will not be feasible to attack in the short and medium term, but the security margin 
with respect to future breakthroughs is lower for RSA and El Gamal than for the other 
algorithms. 

4.2.7.1 ElGamalShareManager,	  RSAShareManager	  
The ElGamalShareManager and RSAShareManager classes are specific extensions of the 
com.scytl.jbasis.shares.ShareManager class (4.1.4.3) used to split and reconstruct keys 
with Shamir’s secret sharing algorithm. The former is the most complex adaptation, as it 
splits an array of El Gamal keys into an array of split shares. Both classes also override the 
saveNext and readNext methods for interfacing with smart card storage, though it is not 
obvious from the code alone why this is needed. 

4.2.8 com.scytl.evote.protocol.managers.rcmanager 

Similarly to the previous package, the rcmanager classes are used to manage return codes. 
Once again the ReturnCodeManager class itself just provides the entry point, and the actual 
logic is implemented in the various classes. We will have a closer look at the cryptographic 
defaults specified, as well as specific classes. 

Class Parameters 

AnswerCode 
EmptyVoteCode 
PartyCode 
PositionCode 
PreferenceCode 
ReturnCode 

HMAC_ALGORITHM = "HMACSHA256"; 
The MAX_BIT_SIZE of the codes is 14. 

                                                        
14 Following the NIST SP 800-57 recommendations from 2012, see 
http://csrc.nist.gov/groups/ST/toolkit/key_management.html  
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BallotIdentifier HMAC_KEY_BIT_SIZE = 256; 
HMAC_ALGORITHM = "HMACSHA256"; 

DecryptedCodeColl 
DecryptedCode 
EncryptedCodeColl 
EncryptedCode 

SECRET_KEY_BIT_SIZE = 256; 

HashedReturnCode HASH_ALGORITHM = "SHA256"; 
TRUNCATED_DIGEST_BIT_SIZE = 160; 

The various Code-classes all use variants of HMAC as a message authentication code, with 
SHA-256 as the hash. This is a primitive that provides a very high security margin (roughly 
256 bits). Similarly, the encryption classes use 256 bit keys and invoke the default 
parameters from com.scytl.evote.protocol.ciphers.SymmetricCipher (4.2.1.5), which 
should result in AES/CBC/PKCS5Padding being used as the default algorithm. 

The HMAC key length is only specified in the BallotIdentifier class. In the other cases, 
the size will also be 256 bits, but the value is specified under the hood in 
com.scytl.evote.protocol.managers.keymanager.GenerateSecretKey and not 
explicitly in the code. 

4.2.8.1 AnswerCode,	  EmptyVoteCode,	  PartyCode,	  PositionCode,	  PreferenceCode,	  and	  
ReturnCode	  

These classes are all nearly identical. Each class is used to generate a particular type of 
return code, with the generate() method being the key component for this. 

The significance of the various *_MAX_BIT_SIZE = 14 of the various classes is that a return 
code shall be exactly 14 bits of length, i.e. selected from the range [0, 8191]. Why this 
particular range was chosen (rather than e.g. [0, 9999]) is not obvious. 

Every class generates its return code in the following manner: 

1. Convert the code identifier (e.g. “Answer ID”, “Empty Vote Constant”, “Party ID”, 
etc.) and the voter identifier to a byte array. 

2. Use the Return Code Generator’s (arbitrary) symmetric key to generate a SecretKey 
for the HMAC. 

3. Compute a HMAC over the byte array from (1) using the secret key. 
4. Convert the HMAC digest to a BigInteger, and truncate it modulo 2MAX_BIT_SIZE – 1 
5. Return the resulting short integer.  

This will give statistically random return codes that are related to the hashed identifiers and 
the RCG secret key in a deterministic way. Of course, since the codes are truncated to short 
values, it is trivially possible to generate a “valid” code (with probability 1:214 of success) 
using brute force guessing. This is presumably irrelevant for the protocol, as the probability 
of multiple correct guesses quickly becomes negligible. 
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4.2.8.2 HashedReturnCode	  
The HashedReturnCode class is also “strange”, in the sense that it makes a seemingly 
arbitrary transformation that does not make sense without further context. In short, it takes 
a ReturnCode object, hashes it using SHA-256, then truncates the output to 160 bits. This is 
a somewhat nonobvious, though secure, way to produce a random-looking 20-byte message 
digest. 

We note that the collision resistance of this construction is down to 80 bits, due to the 
birthday paradox applied to the truncated hash. This means that a brute force attack to find 
two ReturnCode objects with the same hash (given sufficient degrees of freedom) might be 
feasible in theory, for a well-funded and patient adversary. 

The overall security margin for this construction is thus not very high. On the other hand we 
expect that spending massive computational effort to find two return codes that hash to the 
same value is unlikely to be a cost-effective approach for an attacker wanting to harm the e-
voting system. 

4.2.9 com.scytl.evote.protocol.signers 

Corresponding to the ciphers package (4.2.1), this is where the local implementations of 
signature algorithms are located. The package contains a remarkable number of slightly 
different implementations of Schnorr signatures, with minor differences in purpose and 
method signatures. While all the implementations look superficially correct for their 
particular use cases, this is noticeably difficult to verify by hand. 

4.2.9.1 AsymmetricSigner	  
The AsymmetricSigner class is the only signer which is not a custom implementation based 
on El Gamal and Schnorr’s signature scheme, instead defaulting to the SunRsaSign JCE 
provider to utilize the SHA256withRSA algorithm specification. This is expected to be secure 
as long as the RSA modulus is of at least 2048 bits. 

The sign and verify operations are specified for both byte arrays and serializable objects, 
and simply wrap the update and sign/verify methods from the provider. 

4.2.9.2 DecryptionPrivateKeySigner	  
The class uses a Schnorr15 signature as a zero-knowledge proof that the signer knows the 
private key used to decrypt a set of vote option identifiers. The SHA-256 algorithm is used as 
a hash. Main cryptographic logic is implemented in the update, sign and verify methods. 

update: ElGamalEncryptionValues encVoteOptValues, 
BigInteger[] decVoteOptIDs, BigInteger publicKey, 
MessageDigest messageDigest: 

1. Represent all the decVoteOptIDs as one large input byte string 
2. Compute the product of all the decVoteOptIDs (modulo p) 
3. Compute the product of the phi values from encVoteOptValues 

                                                        
15 Named after Claus-Peter Schnorr, see http://en.wikipedia.org/wiki/Schnorr_signature 
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4. Hash the decVoteOptID byte array, and represent it as a BigInteger 
5. Compute phi and gamma for the zero-knowledge proof as either: 

a. gammaZKP = encVoteOptValues.getGamma(), 
phiZKP = phi-product * decVoteID-product-1 

b. gammaZKP = encVoteOptValues.getGamma()-1, 
phiZKP = decVoteID-product * phi-product-1 

6. Compute the derived generator and public key for the proof: 
a. _generatorZKP = _generator * gammaZKPhash (modulo p) 
b. _publicKeyZKP = _publickey * phiZKPhash (modulo p) 

sign: BigInteger[] privateKeys, ElGamalEncryptionValues encVoteOptValues, 
BigInteger[] decVoteOptIDs, BigInteger[] publicKeys 

1. Initialize a SHA-256 message digest 
2. Compute a representative of the publicKeys as the product of all the 

keys in the array (modulo p) 
3. Call DecryptionPrivateKeySigner.update() 
4. Securely generate the randomness for the Schnorr signature, in the 

range [2, q-1], and exponentiate it 
5. Hash the randomness, group generator, and the public key 

representative (which is the data to be signed) 
6. Compute the private key part of the signature using the privateKeys 

array, the randomness from step 4, and the hash from step 5 

verify: SchnorrSignature sig, ElGamalEncryptionValues encVoteOptValues, 
BigInteger[] decVoteOptIDs, BigInteger[] publicKeys: 

1. Repeat the 3 first steps of the signing procedure 
2. Recompute the exponentiated randomness from the signature 
3. Recompute the hash from the randomness, generator and public keys 
4. Verify that the result is the same as in the signature 

This implementation of Schnorr signatures appears correct. There are three minor 
observations regarding the sign method. Neither has a significant security impact. These 
observations are common to all the Schnorr signature methods in this package. 

Observations. 

• The randomness is generated in the range [2, q-1], rather than [2, q-2] in the 
BlockElGamalEngine. In practice choosing q-1 as the exponent would be a poor 
choice, but the probability of generating that value with SecureRandom is in any case 
negligible, so there is not really any point in checking. 

• In the original description and security proofs of Schnorr’s signature scheme, the 
hash function should output uniformly random elements of Zp rather than n-bit 
strings. However, a paper by Neven, Smart and Warinschi16 from 2009 indicates that 
this should be fine as long as the hash function output length is at least twice the 
security level. Thus, using SHA-256 without any further processing should be 
sufficient for 128-bit security. 

• If 256-bit security is desirable, SHA-512 should be used. 

                                                        
16 Hash Function Requirements for Schnorr Signatures, http://www.neven.org/papers/schnorr.html  
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4.2.9.3 PartialDecryptionSigner	  and	  subclasses	  
The PartialDecryptionSigner class, together with subclasses 
PartialDecryptionExponentSigner and PartialDecryptionPrivateKeySigner, are 
used to provide zero-knowledge proofs on secret keys used for partial decryption. 
Functionally this is quite similar to the previous signer, but with a somewhat different API 
and different data input. 

In PartialDecryptionSigner, we find the following utility methods: 

computeCoeficients: int numBetas, CryptoFactory cryptoFactory, 
MessageDigest messageDigest: 

• Generates numBetas pseudorandom coefficients, by iterating SHA-256 

• The initial seed is produced from the passed messageDigest, so this 
object must contain some data when the function is called 

generateBeta: BigInteger alpha1, BigInteger alpha2, 
CryptoFactory cryptoFactory, MessageDigest messageDigest: 

• Generate a single pseudorandom coefficient, by invoking messageDigest 
(likely SHA-256) on the alphas, and hashing the result again with 
SHA-256 

generateRandomNumber: BigInteger q: 

• Generate a secure random number in the range [2, q-1] 

The motivation for these utility methods is completely opaque from the source code alone – 
no rationale or context is provided, and an external description of the algorithms is 
necessary to understand why any of this is needed or useful. The generateRandomNumber 
method is identical to the inline code in DecryptionPrivateKeySigner, and again 
arbitrarily chooses the range [2, q-1], rather than [2, q-2] which is used in other places. 

In the two subclasses, actual signing and verification is implemented. These proceed more or 
less identically, as below: 

PartialDecryptionPrivateKeySigner#sign(): 
1. Verify that input parameters are consistent 
2. Initialize a SHA-256 hash with the public inputs 
3. Call computeCoeficients [sic] using the initialized hash 
4. Derive a private key representative, based on an array of input keys, 

and the pseudorandom beta coefficients 
5. Generate randomness for use in the Schnorr signature  
6. Compute alphas from randomness and the data to be signed 
7. Call PartialDecryptionSigner#generateBeta and use beta as the hash in 

the Schnorr signature 
8. Compute the remainder of the Schnorr signature using the derived 

private key 

Arithmetically, these implementations appear correct, in the sense that a Schnorr signature 
is produced on the alpha values using a derived private key. The alphas and keys are 
computed differently in the two cases, but the implementation logic is very similar. 
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4.2.9.4 ReEncryptionFactorSigner	  
This is yet another re-implementation of Schnorr signatures for a particular use-case. In this 
case, the private key for signing is generated from the array of re-encryption exponents 
(reEncExponents) that is used as input. The data that is signed, includes the hash of the set 
of public keys used to encrypt vote option identifiers. The effective generator used for the 
signature is computed by hashing the encrypted and re-encrypted votes. 

Once again the core Schnorr signature primitive looks secure, but based on the source code a 
bit of thinking is needed to understand what it actually signs. 

sign: BigInteger[] reEncExponents, ElGamalEncryptionValues[] 
encVoteOptValues, ElGamalEncryptionValues[] reEncVoteOptValues, 
BigInteger[] publicKeys 

1. Compute the following BigInteger products (all modulo p): 
a. publicKey = product of elements of publicKeys [] 
b. gammaProd1 = product of gammas in encVoteOptValues 
c. gammaProd2 = product of gammas in reEncVoteOptValues 
d. phiProd1 = product of phis in encVoteOptValues 
e. phiProd2 = product of phis in reEncVoteOptValues 

2. Compute the message as the hash of the products, as well as the 
ElGamal group generator 

3. Derive an offset generator: generatorZKP = generator * publicKeymessage 
4. Sign the publicKey product of terms, using the derived generator as a 

base, and the reEncExponents as the private key 

Thus it is in fact the set of public keys that are signed with the re-encryption exponents. 

4.2.9.5 SchnorrSignature,	  SchnorrRandomExponent	  and	  SchnorrRandomExponentPool	  
These are simple container classes for signature objects and exponents, and do not contain 
cryptographic logic. The two latter classes are of unclear benefit; SchnorrRandomExponent 
seems only to be used by VoteOptionSigner, and SchnorrRandomExponentPool is passed 
around as an argument in the PartialDecryptionSigner classes, but does not seem to be 
used. 

4.2.9.6 VoteOptionSigner	  
This is the fifth variation over a Schnorr signature implementation, to fit yet another specific 
use-case. As such, much of the code is identical to the previously analysed incarnations, with 
minor variations to trip up the unwary reader. 

The most obvious differences from the previous implementations is that the 
com.scytl.evote.protocol.integration.eraser.Eraser is used more aggressively to 
ensure that secret information is safely garbage collected, and that the data to be hashed is 
hex encoded for compatibility with JavaScript. 

The class appears to implement a secure Schnorr signature, but with the many competing 
implementations and slightly different method APIs throughout, one has to be very careful 
to use the right algorithm for the application context. 
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4.2.10 com.scytl.evote.protocol.tools 

The “protocol tools” packages contain a number of free-standing command-line tools. It is 
unclear how these are used, but they should be checked. 

4.2.10.1 ParametersGenerator	  
The ParametersGenerator tool is used to generate El Gamal parameters q and p = 2q+1, 
based on the desired bitlength and the certainty required for primality testing. 

The actual p’s and q’s are generated via a call to ElGamalParametersGenerator from the 
generators package (4.2.4.2), and the ParametersGenerator performs a self-test for 
additional verification that the set of El Gamal parameters are sound. 

The default choices for bitlength and certainty are 2048 bits and 1-2-100, respectively, which 
is consistent with choices made elsewhere.  

4.2.10.2 GeneratorSelector	  
The GeneratorSelector tool is used to pick a generator element, based on group 
parameters q and p provided as input. Presumably, it runs right after the 
ParameterGenerator tool. 

Generators are actually generated via a call to ElGamalParametersGenerator (4.2.4.2) from 
the generators package, and the class makes a self-test for additional verification that the 
parameters are sound. 

The default size of the El Gamal parameters is given by PARAM_SIZE_DEFAULT = 2048, 
which is consistent with other classes. However, the size parameter, whether the default is 
used, or it is parsed from command line, is not actually used to verify the length of the 
parameters. In fact, it is only used in the input and output filenames. This is fine if the tool is 
run in conjunction with ParameterGenerator, but in general the code would be more robust 
if it did not rely on the filenames being correct. 

4.2.10.3 	  PrimalityTester	  
The PrimalityTester tool is simple command-line wrapper for the library function 
BigInteger#isProbablePrime, with user-selectable certainty. The default value is 1000, 
which is exponentially more certain (and thus significantly slower) than the choice of 100 
used elsewhere. 

4.2.10.4 PrimeNumberGenerator	  
The PrimeNumberGenerator tool is, somewhat misleadingly, not used to generate primes in 
itself, but to determine primes that are quadratic residues (or quadratic non-residues) for 
specified El Gamal parameter sets. These primes are then used as vote option identifiers.  
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4.3 Analysis of other cryptographic packages 

4.3.1 com.scytl.crypto 
The com.scytl.crypto package is for some reason not found as part of the 
“Internettstemmegivning” code repository, but the sources can be found in the “Skanning” 
repository. It is used by the com.scytl.evote.auditing and com.scytl.slogger 
packages, to provide “boxed” cryptographic functionalities. 

According to source code comments, the aim of the package is to provide a simple pre-
configured high level cryptographic API for achieving simple tasks. 

4.3.1.1 CryptographicConstants	  
The CryptographicConstants class defines the following set of defaults: 

public static final String ASYMMETRIC_KEY_ALG = "RSA"; 
public static final int ASYMMETRIC_KEY_LENGTH = 2048; 
public static final String ASYMMETRIC_CIPHER_ALG = "RSA/ECB/PKCS1Padding"; 
public static final String ASYMMETRIC_SIGNATURE_ALG = "SHA256withRSA"; 
public static final String SYMMETRIC_KEY_ALG = "DESede"; 
public static final String SYMMETRIC_CIPHER_ALG = 
"DESede/CBC/PKCS5Padding"; 
public static final String HMAC_ALG = "HMACSHA256"; 
public static final String HASH_ALG = "SHA-256"; 
public static final String KEYSTORE_TYPE = "pkcs12"; 
public static final String CERTIFICATE_TYPE = "X.509"; 
public static final String CERT_CHAIN_BUILDER_TYPE = "PKIX"; 
public static final String SECURE_RANDOM_ALG = "SHA1PRNG"; 
public static final int SECURE_RANDOM_SEED_LENGTH = 20; 

This can be compared with similar default parameters specified in other places, notably the 
jbasis (4.1.1.1) and protocol (4.2.7, 4.2.8) packages. 

The most notable choice in the above list, is probably the use of 3-DES as 
SYMMETRIC_KEY_ALG and SYMMETRIC_CIPHER_ALG. While 3-DES provides an adequate 
security level of roughly 112 bits, it is a distinctly less secure option than AES, and also 
provides significantly poorer software performance. 

4.3.1.2 CryptographicAlgorithms	  
The CryptographicAlgorithms class provides a packaged interface to basic primitives: 
symmetric and asymmetric encryption, digital signature, key generation, random byte 
generation, a message authentication code, and a hash. The algorithms are specified using 
the hard-coded identifiers from CryptographicConstants. 

A feature here that may take some by surprise is that the generateSymmetricKey method 
uses a key generator initialized for use with SYMMETRIC_KEY_ALG, i.e. triple-DES. Thus a 192-
bit key will be generated. This may not be what is expected if the key is to be used with the 
(256-bit) message authentication code primitive; the MAC will still be secure, but at the 192-
bit security level, rather than at full strength. 
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4.3.2 com.scytl.evote.vsframework.vscommon.client.utils 

4.3.2.1 UtilsRBAC	  
In the otherwise unassuming UtilsRBAC class, we find the method cipherSymmetrically 
which implements password-based encryption. The primary purpose of this methods 
appears to be decrypting access control tokens used, which are issued externally and used for 
role-based access control. As such, the implementation has presumably been written to 
conform with an external specification which may not be under Scytl’s direct control. 
However, it looks like the utility is also used to encrypt data “internally” within the voting 
system. 

This implementation has several advantages over the password-based encryption 
implementation in the jbasis library, which is insecure with the default algorithm choices. 
Nevertheless, password-based security is rightly known as a minefield, and the 
implementation appears to contain significant security flaws. Consider the following source 
code from lines 111 onwards, containing the meat of the cryptographic logic. 

String salt = 
"Static salt for use in key genereation while exporting security token"; 

 
PBEKeySpec keySpec = 

new PBEKeySpec(password.toCharArray(), salt.getBytes(), 2, 
256); 

SecretKeyFactory keyFactory = 
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1"); 

SecretKey key = keyFactory.generateSecret(keySpec); 
cipher = 

Cipher.getInstance("AES/CFB/PKCS7PADDING", 
new BouncyCastleProvider()); 

 
byte[] iv = 

new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 
0x0f }; 

 
AlgorithmParameterSpec paramSpec = new IvParameterSpec(iv); 
cipher.init(mode, key, paramSpec); 
byte[] outData = cipher.doFinal(inData); 

There are three clear security weaknesses in this code: 

Vulnerabilities. 

1. A fixed IV (initialization vector) combined with AES in CFB (Cipher FeedBack) mode 
means that the keystream used to encrypt the first block will be identical every time 
the method is used (with the same password). For input data that shares a prefix, the 
keystreams and ciphertexts will be identical until they block where they diverge. 
• Given two ciphertexts (protected with the same password), an attacker can obtain 
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the exclusive-or of the beginning of the plaintexts. 
• Given a plaintext-ciphertext pair (protected with an unknown password), an 

attacker can decrypt the beginning of other ciphertexts. 
2. A fixed IV also means that the same data will encrypt to the same value (under a fixed 

password) every time. 
3. The iteration count for the password hash is set to 2. This is such low value that a 

brute force decryption attack on the passwords is likely to be feasible, unless 
passwords are very long. 

Two other observations do not have a direct security impact, but may also be worth noting: 

4. The use of CFB-mode and PKCS #7 padding with AES is somewhat unusual, though 
secure as such. It contrasts with the rest of e-voting, which uses CBC-mode and PKCS 
#5. This seems somewhat arbitrary, but may (as mentioned) be due to an external 
specification. 

5. It is not clear whether the specified password hash will process all 16 bits in the 
character array holding the password, or only digest the lower 8 bits of each character 
value. This is not really a problem, as long as the passwords are sufficiently long. 

The cipherSymmetrically method is used a number of places in the vsframework project, 
notably the com.scytl.evote.vsframework.client.commands packages. For instance, in 
the method SymmKeyGenerationCommand#execute it is used to store the generated 
symmetric keys to disk using the master password. 

Regarding the password hash iteration count, a similar vulnerability was found in the 
Blackberry backup system in 201017; in that case the value 1 was used as an iteration count. 
The recommended value when PBKDF2 was proposed in 2000 was 1000 iterations, and the 
current recommendations are significantly higher due to advancements in hardware speeds. 

Mitigation. 

1. To fix the IV issues, one needs to handle encryption and decryption modes slightly 
differently. In encryption mode, a unique random 16 byte IV should be generated and 
prepended to the output byte stream. In decryption mode, the first 16 bytes of the 
input byte stream should be used as the IV. 

2. The PBKDF2 iteration count should ideally be “as high as possible” without 
impacting the user experience. Actual values in real-world use tend to range from 
10000 and upwards. Ideally, the number should be chosen based on an estimate on 
how long it should take to crack the password-based encryption, giving current brute-
force capabilities and the password policy in use. 

Another sound option would be to stick to PKCS #12 as a container format; as this can be 
used to persist arbitrary data and not just keystores. Writing a simple interface on top of the 
BouncyCastle PKCS #12 implementation might be a simpler option than creating it from the 

                                                        
17 See CVE-2010-3741, https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-3741, and 
http://www.infoworld.com/print/139436  
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more general JCE primitives. 

4.3.3 com.scytl.evote.counting.ecounting.crypto 
The counting package provides yet another small crypto module, consisting of the three 
classes. 

4.3.3.1 TemporalDigestedFile,	  TemporalDigestedFileInputStream	  and	  
TemporalDigestedFileOutputStream	  

A TemporalDigestedFile is an absolute path (representing a File), together with a digest 
containing the hash of that file. The other two classes extend FileInputStream and 
FileOutputStream to keep track of the message digests as files are read and written. 

There is one rather obvious problem with this implementation. 

Both Stream classes: 
_messageDigest = MessageDigest.getInstance("MD5"); 

Since MD5 is not a collision-resistant hash algorithm, this method may not provide strong 
guarantees that a TemporalDigestedFile has not been actively modified between writing 
and reading. 

Let us consider how this is used. It turns out that the 
com.scytl.evote.counting.ecounting.builder.EMLbuilder class uses 
TemporalDigestedFileOutputStream to write election results data to storage. Meanwhile, 
the com.scytl.evote.counting.ecounting.zip.CreateZipFile class reads the XML 
files back in with a TemporalDigestedFileOutputStream, to create a zip file and export the 
results. 

CreateZipFile#createResultsZipFile() excerpt:  
// Read the temporal file 
tdfis = 

new TemporalDigestedFileInputStream(temporalFile); 
byte[] fileContent = IOUtils.toByteArray(tdfis); 
tdfis.close(); 

 
if (!tdfis.checkDigest()) { 

throw new UnexpectedException( 
THE_TEMPORAL_FILE_HAS_BEEN_TAMPERED 

+ temporalFile); 
} 

If an attacker has some degrees of freedom relating to how the EMLbuilder class writes its 
output XML files, this is likely to be insecure due to known collision attacks on MD5. 
Regardless of the attacker capabilities, using MD5 for any kind of secure purpose (with the 
possible exception of HMAC-MD5) is strongly discouraged and may be in violation of project 
requirements. 

Vulnerability. 
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• Use of deprecated hash function MD5 to ensure file integrity. 

Mitigation. 

• Replace MD5 with SHA-256, or with a secure MAC. 

4.4 Analysis of audit and logging framework 
The audit and logging framework consists of the secure-logger (com.scytl.logger) and 
auditing (com.scytl.evote.auditing.*) packages. These are reasonable small and self-
contained packages, and it stands to reason that the logs produced should be verifiably 
authentic. 

4.4.1 com.scytl.slogger 
The secure-logger package extends the log4j library to provide secure logging functionality. 
What we are particularly interested in here are the core classes, as well as event processors 
(located in the com.scytl.logger.processor sub-packages), which are used to add 
cryptographic functionality. 

4.4.1.1 SecureFileAppender	  
The SecureFileAppender class is the base abstract secure logger class, extending the 
FileAppender class from log4j. It does not actually implement any security features on its 
own. 

4.4.1.2 SecureLoggingEvent	  
The SecureLoggingEvent, extending the log4j LoggingEvent, is the basic decorator class 
for events that are to be logged. 

4.4.1.3 LoggingEventProcessor	  
This is the general interface that all event processors must implement. 

4.4.1.4 SignatureEventProcessor	  
A SignatureEventProcessor is used to put a digital signature on a SecureLogEvent. A 
private key for the signature scheme must be specified in the constructor. The public 
processEvent method uses a protected method, signData, to create a signature using the 
com.scytl.crypto library. According to the default settings, this will sign with 
SHA256withRSA, which is a secure signature scheme. 

A possible issue with the SignatureEventProcessor is that it creates the byte array to sign 
using String.getBytes.  This encodes the string using the default character set, rather than 
a specific character set such as UTF-8. Hypothetically, this could cause ambiguities if 
someone is able to modify the default character set, or create a log event containing 
characters that cannot be represented in the default character set. 
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4.4.1.5 HMacEventProcessor	  
A HMacEventProcessor is used to produce a message authentication code on a 
SecureLogEvent. The message authentication code is computed over the current event, as 
well as the previous MAC value, which means that the sequence of log entries is preserved. 
In pseudocode: 

calculateHMac: LoggingEvent loggingEvent, SecurePatternLayout layout: 
1. Use the layout to create a formatted String from the loggingEvent 
2. Compute the HMAC over the concatenation of the _lastHmac value and 

the formatted event 
3. Update _lastHmac with the computed HMAC value 
4. Base64-encode the HMAC and return it 

This chaining feature means that intermediate log entries can not be deleted, as that would 
invalidate HMACs on all subsequent entries. However, a log could still be truncated. 

The MAC used is HMACSHA256 as specified in CryptographicConstants (4.3.1.1), which is 
certainly secure. However, the key generated for use with the MAC appears to only be 192 
bits in length, since the generateSymmetricKey method from the 
CryptographicAlgorithms class (4.3.1.2) is used. 

Once again there also seems to be a potential issue with the String.getBytes conversion, 
which does not specify the character set for the conversion. 

4.4.1.6 EncryptedHMacEventProcessor	  
Building on the previous class, the EncryptedHMacEventProcessor implements additional 
secretKeyLog functionality, to persist and rotate the HMAC secret keys. 

secretKeyLog: SecurePatternLayout layout: 
1. Get the existing _lastHMAC and _secretKey, if they exist 
2. Reinitialize the superclass, thus obtaining a new secret key and a 

reinitialized HMAC 
3. Asymmetrically encrypt the new key with RSA 
4. Generate a SecureLoggingEvent containing the _lastHMAC, the old 

secret key, and the encrypted version of the new key 

By itself, it seems that this would not be secure; an attacker could truncate the key log (and 
the event log) to hide the key change, and emit new log events using the old MAC key (from 
the key log). Thus, the class should not be used directly. 

4.4.1.7 SignedEncryptedHMacEventProcessor	  
This is the ultimate event processor class, adding all functionalities. It extends the secret key 
logger in the EncryptedHMacEventProcessor class with an additional 
SignatureEventProcessor, which is used to sign the secretKeyLog. The full contents of a 
secretKeyLog event is thus: 

• the standard log formatting, including timestamp and log level; 
• the current _lastHMAC state (before the event was emitted); 
• the old HMAC key (if it exists) unencrypted; 
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• the new HMAC key, encrypted; 
• the chained HMAC of the previous four elements (taken with the new key); 
• the signature of the previous five elements; and 
• a properties object, with the ENCRYPTED_SESSION_KEY, LIBERATED_SESSION_KEY (if 

it exists) and SIGNATURE flags set. 

In the terminology of the implementation, a log “block” consists of the ordered set of log 
entries made under a single HMAC key. It is clear that the chained HMAC construction 
makes it infeasible to remove individual events from a block. However, there is nothing here 
that would prevent an attacker with system access to truncate the log. 

Potential vulnerability. 

If an attacker were to truncate an event log past a block boundary (i.e. key change), she is 
also able to add new (fake) log events to that block, using the HMAC key that was published 
at the block change. 

This vulnerability should probably be mitigated by operational, rather than cryptographic, 
means. Our understanding is that the monitoring tool Splunk is used to monitor log events 
in real time, and that there are configured limits as to how large an event log block will grow 
before the key is rotated. 

The security goal for a secure audit log should, as a minimum, be that any attempt at 
tampering with the log will be detected (with high probability). Using a real-time log 
collection tool which resides in a different security zone may satisfy this requirement, if it 
means that an attacker with local access can not get an opportunity to truncate and modify 
the log before it is synchronized remotely. 

Another potential attack scenario might occur if the attacker can prevent communications 
between the logging server and the real-time monitoring system for some period of time, and 
use that window to stop the log generation on the logging server and manipulate the log 
events before the connection is regained. Because of this, the monitoring should preferably 
be synchronized in some way. 

If there are stronger security requirements related to audit logging, one must consider 
carefully how this can be achieved within (or without) the secure-logger framework. 

4.4.1.8 SignatureEventValidator	  
A SignatureEventValidator is the natural counterpart of the SignatureEventProcessor, 
containing the validation logic for a signed SecureLoggingEvent. The validateEvent 
method will take an event and a layout as input, and check the signature on the event if it 
contains a signature. 

An interesting “feature” of the SignatureEventValidator is that it succeeds if the event in 
question does not have the SIGNATURE property set. 

validateEvent: SecureLoggingEvent event, SecurePatternLayout layout: 
try { 

if (event.getEventProperties().containsKey( 
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SecureMessageProperties.SIGNATURE)) { 
… validate the signature … 

} 
} 

It appears that signed events remain malleable; an attacker could simply remove the 
SIGNATURE property to prevent validation at this point. However, since the 
SignatureEventValidator is not used by itself, we have to look at the HMAC event 
validators as well.  

4.4.1.9 HMacEventValidator,	  EncryptedHMacEventValidator,	  
SignedEncryptedHMacEventValidator	  

These classes validate the corresponding processors previously analysed. We will have a 
closer look at the validation logic for SignedEncryptedHMacEventValidator: 

validateEvent: SecureLoggingEvent event, SecurePatternLayout layout: 
super.validateEvent(event, layout); 
Map<String, String> eventProperties = event.getEventProperties(); 
if (eventProperties 

.containsKey(SecureMessageProperties.ENCRYPTED_SESSION_KEY)) { 
if (!eventProperties 

.containsKey(SecureMessageProperties.SIGNATURE)) { 
throw new EventValidatorException( 

"Signature expected: " + layout.format(event)); 
} 

} 
_signatureEventValidator.validateEvent(event, layout); 

The call to super.validateEvent validates the HMAC data. The validation logic then checks if 
this is a  secretKeyLog event, in which case the SIGNATURE flag is also required to be 
present, forcing the signature validation to take place. 

 

Potential vulnerability. 

However, what happens if someone has removed the ENCRYPTED_SESSION_KEY and 
SIGNATURE flags from the log event properties? It appears that the event will validate 
flawlessly, even though the actual data might be modified. This would not be completely 
transparent, because it will also prevent the HMAC validator from rekeying with the new 
key. But it illustrates once more the malleability of the secure logging framework, and the 
degrees of freedom available to an attacker. 

There may be other consistency checks present in the logging and validation framework, 
though not of a cryptographic nature. Once again, a key countermeasure to ensure the 
impossibility of log tampering appears to be the presence of the real-time monitoring 
systems. A different and complementary option, though more intrusive and likely to be less 
convenient, would be to use some kind of write-once (WORM) storage medium to persist the 
logs locally on the server that emits them. 
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4.4.1.10 PublicEncryptedHMacEventValidator	  and	  
PublicSignedEncryptedHMacEventValidator	  

The Public… classes are used to validate old log blocks, e.g. blocks where the HMAC key has 
been published due to key rotation. They accumulate a block of events until the HMAC key is 
“liberated”, and then verify them as a batch. 

4.4.2 com.scytl.evote.auditing 

The auditing package is a small and Norway-specific audit framework built on top of the 
secure logger package. It does not contain a lot of cryptographic functionality, but we will 
have a quick look at it regardless. 

4.4.2.1 AuditSecureFileAppender	  
The AuditSecureFileAppender class contains its own private extension of 
SignatureEventProcessor, which uses java.security.Signature directly, instead of 
rather than going through the implementation in com.scytl.crypto or using e.g. 
com.scytl.evote.protocol.signers.AsymmetricSigner (4.2.9.1). 

Presumably there is a reason for this, though it is somewhat unclear what that reason is. The 
only obvious difference from the boxed com.scytl.crypto implementation would be that it 
is possible to supply an alternate crypto provider, but this is also offered by 
AsymmetricSigner. In any case, the signature implementation appears to be secure as long 
as a secure private key is used. 

Similarly, the class also implements its own routine to decrypt an array of bytes with 
RSA/ECB/PKCS1Padding, supporting multiple providers. In this case, the functionality is 
already present in com.scytl.evote.protocol.ciphers.AsymmetricCipher (4.2.1.1). 

The decryption routine makes the same strange mistake as the AsymmetricCipher 
implementation regarding the cipher block size: 

Decrypt: byte[] what, Key key: 
if (_provider == null) { 

cipher = Cipher.getInstance(RSA_ECB_PKCS1_PADDING); 
} else { 

cipher = Cipher.getInstance(RSA_ECB_PKCS1_PADDING, _provider); 
} 
byte[] toReturn; 
if (cipher.getBlockSize() > 0) { 

byte[][] unpacked = 
unpackSymmetricMsg(what, cipher.getBlockSize()); 

cipher.init(Cipher.DECRYPT_MODE, key, new IvParameterSpec( 
unpacked[0])); 

toReturn = cipher.doFinal(unpacked[1]); 
} else { 

cipher.init(Cipher.DECRYPT_MODE, key); 
toReturn = cipher.doFinal(what); 

} 
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According to the Javadoc for javax.crypto.Cipher, getBlockSize returns “the block size 
(in bytes), or 0 if the underlying algorithm is not a block cipher”. Thus this is never actually 
supposed to happen. 

In general, multi-block encryption with RSA is not advisable, also due to performance 
reasons. The provider will probably allow one to encrypt (and decrypt) multi-block data, but 
there is not a chaining mode defined, which means that an attacker would be free to reorder 
or manipulate the blocks. 

Finally, note that the class once again explicitly uses a 192-bit triple-DES key for use with a 
256 bit HMAC. This is not in itself insecure, since a k-bit HMAC provides roughly k bits of 
security, but it seems somewhat strange. 

4.4.2.2 RemoteAttestation	  and	  RemoteConnector	  
The RemoteConnector class (part of tpm-central-tool, in 
com.scytl.evote.auditing.tpm.bizz) opens an unencrypted remote Socket in the aptly 
named unsafeConnect method. However, our understanding is that this tool is a proof of 
concept implementation that is not actually used in the production system. 

4.4.2.3 Other	  classes	  
Some of the other classes in the audit package are used to handle keys (for encrypting, 
signing and/or computing HMACs), but there does not seem to be any significant 
cryptographic functionality as such. 

4.5 Key generation 
As the final part of our review, we will look at how keys are generated, using the vsframework 
command line client utilities. This code is invoked via the Election_superscript.sh shell 
script. 

4.5.1 com.scytl.evote.vsframework.client.utils 

The utils package contains several utility classes, in particular one that is used extensively 
during key generation. 

4.5.1.1 Utils	  
The Utils class contains a number of useful methods and constants. It defines the following 
security parameters: 

• P12_PASS_SIZE = 20; 

• PUK_MIN_LENGTH = 4; 

• PIN_MIN_LENGTH = 4; 

• PUK_MAX_LENGTH = 8; 

• PIN_MAX_LENGTH = 8; 

• RSA_KEY_SIZE = 2048; 

• SHARE_PIN = "11111111"; 

• P12_MIN_LENGTH = 8; 
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• P12_MAX_LENGTH = 20; 

Among several methods defined, the following are explicitly relevant for key generation and 
security. 

• createRandomBase32 creates a random Base32 string of the specified length, 
typically used as a human-readable password. It does this using a CryptoFactory 
instance passed as a parameter. 

• writePasswordFile writes a String representing a password, to a file. This file must 
be well-protected, since it contains the actual secrets. 

• The readPrivateKeyFile, writePrivateKeyFile, and mergePrivateKeyFile 
methods appear to be using the hard-coded SHARE_PIN value when dealing with 
temporal key shares. This is obviously not secure, but it is unclear how much it is 
used. 

4.5.2 com.scytl.evote.vsframework.client.commands.kms 

The package contains 44 different command classes that can be invoked via the command 
line, including key generation. Our focus are the commands that actually generate keys, with 
reference to the election superscript and Scytl’s election configuration guide document. The 
main functionalities are usually implemented in the execute method of the command class. 

Commands are listed in the order they are first invoked by the election configuration script. 

4.5.2.1 InteractiveKms	  
The InteractiveKms is a very large “master” implementation, containing all the commands 
needed to perform the key setup phase of the voting system. Much of this is not directly 
cryptographic in nature. However, there are a few points are worth noting. 

The signature algorithm property is set to SHA512withRSA, contrasting with the usage of 
SHA256withRSA elsewhere. This is not insecure, but it is inconsistent. 

In the createPasswordsFiles method, the method cipher (final byte[] data) from 
com.scytl.evote.vsframework.client.Interactive is used repeatedly to process data 
which is subsequently written to file. This is in fact just a thin wrapper for the method 
UtilsRBAC#cipherSymmetrically (4.3.2.1), which as we have seen contains a number of 
security weaknesses. 

4.5.2.2 CAGenerationCommand	  
The first step of election setup is to generate the election event certificate authority’s root 
certificate. In the execute method, the keymanager package (4.2.7) from the protocol 
project is used to generate a certificate, which is tested for consistency. It is then serialized as 
a PKCS #12 file, protected with a random password generated by the Utils class. The 
password consists of 20 (P12_PASS_SIZE) base32-encoded characters, a total of 100 bits of 
entropy. This should be OK given the slow PKCS #12 password hash. 

Finally, the encrypted PCKS #12 key file is written to disk, and the random password is 
written to disk as a plain text file, again using the Utils class. 
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With default settings in the keymanager package, the certificate generated should be using 
2048 bit RSA. Since the master keystore password is written to a cleartext file, care must be 
taken that it is not accidentally exposed, and that it is securely deleted after use. Measures 
such as using a dedicated (air-gapped) machine and hard disk encryption will be useful to 
achieve this. 

4.5.2.3 RSAGenerationCommand	  
After the CA has been generated, public and private RSA keys are generated for each of the 
system components. The execute method loads the CA (reading the password from the 
console if running interactively), and repeatedly calls generateKey for each component. The 
latter method uses a keymanager to generate a public key. This time the key size is specified 
explicitly as 2048 bits, using the defined constant from the Utils class, rather than using the 
default parameter in the keymanager package. 

After this, the key is certified using the CA, After this, the code proceeds as in the previous 
class: the key is tested for consistency, serialized as PKCS #12 and encrypted with a random 
20-character base32. The key and password is finally written to disk. 

Once again, the approach seems reasonably provided that the password file is kept secure. 

4.5.2.4 GenerateCSRCommand	  
The GenerateAppCSR command is used to generate certificate signing requests for the keys 
that are generated in hardware security modules, rather than by the central KMS. This code 
should be executed on the various systems connected to a HSM (e.g. the RCG and the VCS).  

The execute method is fairly long and linear. It initializes a BouncyCastle provider, loads a 
local keystore from a specified path and with a specified passphrase, or generates a new one 
if needed. This time, the key algorithm and provider is loaded as properties, and the key size 
is taken as the default from keymanager. This is again slightly different from the two 
previous classes, though the end result should be the same. 

With a keypair at hand, the certificate signing request is invoked via the keymanager, in 
what appears to be a straightforward manner, the request is sanity checked and persisted to 
a file. 

4.5.2.5 GenerateAppCertificateCommand	  and	  GenerateCertificateCommand	  
These classes are used to use the central CA to sign certificates based on the certificate 
signing requests from the previous point. The GenerateCertificateCommand class uses a 
BCCryptoFactory and accesses the BouncyCastle CA provider to certify (via keymanager 
and jbasis). This appears to be straightforward. 

4.5.2.6 AddSymmetricKeyToPKCS12Command	  
The command is used to add symmetric AES keys to the mix node PKCS #12 files. Key length 
is taken from the usage focus. The key itself is generated at random via the KeyManager. The 
password is either loaded from the command line, from the password file, or generated 
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anew. After the key is written to the PKCS #12, it is read back for verification. Once again 
this seems to be reasonable. 

4.5.2.7 SymmKeyGenerationCommand	  
The SymmKeyGenerationCommand is used in step 8 of the generation, to generate a 
symmetric key which is used by the VCS to generate private voter parameters, and also to 
provide a symmetric key for the RCG. 

The symmetric key is generated via the KeyManager and the indicated key length from the 
focus. At this point, the key is stored using Utils.encryptFile, which uses an underlying 
JCEEnvelope to encrypt the file with a certificate, whose path is specified by the mandatory 
attribute _certFilePath. 

However, if the optional flag _storeCipheredSymmetricKey is specified, the key is also 
persisted to a password-protected file using the infamous 
UtilsRbac#cipherSymmetrically method (4.3.2.1). We observe that this flag is set in the 
Election_superscript.sh present in the code base. As previously discussed, the 
symmetric password-based encryption contains multiple security flaws, particularly if 
several files are encrypted using the same master passwords. 

It appears that the keys are encrypted in this way because they are used by other parts of the 
configuration script. 

4.5.2.8 VoterCredGenerationCommand	  
The VoterCredGenerationCommand is used to generate keys for the individual voters in the 
electoral roll. It unlocks the CA certificate with the master password, generates a number of 
threads, and uses the CredentialsGeneratorJCE class (4.2.6.5) to do the actual work. 

Each credential generated contains a PKCS #12 keystore which is protected with a password. 
The password used is in fact the voter ID. This is somewhat curious, because it means that 
anyone could unlock the certificate knowing only the voter ID. 

It appears that the security of this construction has been analysed and that the behaviour is 
correct (and secure in a protocol context), but when reviewing the code it looks rather 
strange, particularly because the source code does not comment on it. 

4.5.2.9 SharesGenerationCommand	  
The class is used to generate El Gamal keys for the VCS and RCG, and this is done using the 
key generation interface exposed by the KeyManager class. Private keys are then split into 
shares, using the CreatePrivateKeyShareWriter and ElGamalPrivateKeyShareWriter 
classes from the same package, which again interface with the Shamir Secret Sharing 
implementation in jbasis. 

Share files are signed and encrypted with a supplied RSA certificate. The storage medium 
can either be a smart card or a file, presumably the smart card option is what is being used 
for live keys. 
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4.5.2.10 EBPublicKeyCommand	  
The EBPublicKeyCommand generates the “public” El Gamal keys of the election for the 
Electoral Board, which satisfy the identity 

pubKeyEB = pubKeyVCS * pubKeyRCG 

Since the keys are public, this is completely straight-forward: load the public key arrays from 
the VCS and RCG, load the El Gamal group parameters for the election, and do pointwise 
multiplication of each public key pair. 

4.5.2.11 ABWriteSharesCommand	  
The class is used to generate RSA keys for the Administration Board, split them into shares, 
and write the shares to smart cards. As such, it appears like a blend of several of the previous 
commands, doing the following steps: 

1. Load the election certificate authority from a file, and enter the password to unlock 
2. Generate a RSA key pair using the KeyManager interface. The key length is set to 

Utils.RSA_KEY_SIZE, i.e. 2048 bits. 
3. Create a private key share writer, to split the keys into shares and persist them on 

smart cards. As in 4.5.2.9, there is also an option to write to file; this should only be 
used for testing. 

4. Create a public certificate with the appropriate extensions, and use the CA to sign it. 
5. Write the public certificate to a file. 

This appears to be secure. 
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5 Conclusions and final recommendations 

This review has touched on more than 80 classes implementing and handling cryptographic 
primitives, key generation, and other security functionality in the Internet voting 
implementation. In addition, a large number of auxiliary classes have been examined, albeit 
in less depth. 

Our general recommendation is that key stakeholders review the technical chapters 3 and 4 
of the report, and take appropriate actions to evaluate the findings presented, and assess and 
manage the associated risk(s). A short list summarising specific observations is also attached 
as Appendix A.  

The reviewer’s lack of prior experience with the electronic voting project has in some sense 
been a strength, by making it possible to analyze the implementation with fresh eyes; yet it is 
also a weakness, not least in the sense that it is hard to correctly judge the full context and 
thus the potential impact of each potential weakness found. 

That said, based on the review that has been conducted, and our current understanding of 
the system, mnemonic would like to offer four main recommendations: 

1. Address the security issue(s) caused by cryptographic weaknesses in the password-
based encryption function cipherSymmetrically in the UtilsRBAC class (4.3.2.1). 

2. Ensure that sufficient safeguards are in place to maintain the integrity of the audit 
events, despite potential vectors for dishonest parties to truncate or manipulate data 
from the secure-logger appenders. (4.4.1). 

3. Verify that observations made relating to key generation (4.5) do not threaten the 
overall security of the protocol, by inadvertently revealing keys or other security-
critical information. 

4. Take concrete actions to improve the overall state of the source code, e.g. by 
consolidating and refactoring duplicate code, cleaning up interfaces and 
dependencies, documenting technical architecture and usage, and continually 
improving quality assurance practices in the development process. 

It is our sincere hope that these points, and the review as a whole, shall be of use to the team 
attempting to test, improve, and extend the current Internet voting platform, and that it 
may also prove useful to other parties who, acting as academics or private citizens, want to 
inspect, study, validate, and improve the system. 

To conclude on a positive note, mnemonic has not identified any critical cryptographic 
weaknesses that would make the system obviously unsuitable for use. Thus it remains only 
to wish the Ministry of Local Government and Regional Development, Scytl, and the e-
voting project team the very best of luck with the upcoming trial in the 2013 elections. 
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A Appendix: List of findings 

The below table summarizes the main (potential) security findings and observations on the 
Internet voting source code noted in the report. 

Class Chapter Type of finding Initial assessment 

Third-party libraries 2.3 Old versions of third 
party security libraries 

Consider impact of 
known vulnerability in 
Spring Security core 

General 3.5 Use of SecureRandom 
with default RNG and 
provider 

Consider making 
initialisation explicit 

CryptoFactory 4.1.1.1 Defaults for symmetric 
encryption include 3-
DES, ECB mode and 
weak password-based 
encryption 

Avoid relying on jbasis 
default algorithms for 
symmetric encryption 

BCPKCS7Envelope 4.1.2.4 Tries to generate 128-bit 
key for use with 3-DES 

Key must be 192 bits 

BigNumber 4.1.3.1 SecureRandom instance 
passed as argument to 
prime generation 
methods 

Relies on caller 
initializing a secure 
random instance 
properly 

 4.1.3.1 Optimized modular 
exponentiation using 
CRT may have timing 
side channel 

Should only be used in 
situations where an 
attacker cannot obtain 
timing information 

ShamirShadowManager 4.1.4.2 Shamir polynomial 
coefficients are selected 
from wrong statistical 
distribution 

The bug invalidates the 
security proof for the 
secret sharing 
algorithm. 

FileConnection 4.1.4.3 Method for persisting 
shares to files use weak 
password-based 
encryption 

For security, shares 
should be persisted to 
smart cards using 
TokenConnection 

TokenConnection 4.1.4.1 Method for persisting 
shares to smart cards use 
3-DES 

May be inconsistent 
with security 
requirements 

AsymmetricCipher 4.2.1.1 Logic for handling For data not fitting in a 
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multiple-block data 
appears confused 

single block, it would be 
more suitable to use a 
hybrid scheme (e.g. 
JCEEnvelope)  

JCEEnvelope 4.2.1.3 The IV is encrypted, this 
is not necessary 

No security significance, 
but somewhat unusual 

 4.2.1.3 A message 
authentication code 
should be used on the 
enveloped data 

Lack of MAC means that 
enveloped data will not 
satisfy strongest security 
notion (IND-CCA2) 

 4.2.1.3 Note that the jbasis 
classes are used here, i.e. 
not the 
AsymmetricCipher from 
the local package 

Ensure a single 
implementation is used 
consistently throughout 

SymmetricCipher 4.2.1.5 Logic for handling 
multiple-block data 
appears confused 

If instantiated with a 
non-block cipher (e.g. 
RC4), IV does not 
appear to be handled 
correctly 

BlockElGamalEngine 4.2.3.1 No chaining of El Gamal 
blocks means that blocks 
may be shuffled or 
otherwise manipulated 

Engine should not be 
used for arbitrary data, 
or data integrity must be 
protected elsewhere (i.e. 
by a signature or a 
MAC) 

RCGCrypto 4.2.6.2 Insecure random 
instance used to select 
verification of zero-
knowledge proofs 

Evaluate impact of 
insecure random 
generation for security 
proof of protocol 

VCSCrypto 4.2.6.3 The “…WithoutSigning” 
method variant may not 
be secure 

Ensure that signing is 
used for production 
code 

HardcodedElection-
ManagementService 

4.2.6.4 The hardcoded EMS 
contains a lot of fixed 
parameters, including 
credentials 

Ensure that all “test” 
methods are properly 
overridden by the 
production EMS 

CredentialsGeneratorJCE 4.2.6.5 Note that the common This may be working as 
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names of the voter 
certificates are not 
anonymous; anyone can 
compute the hash 

designed; consult 
protocol specification 

 4.2.6.5 Note overlap between 
CredentialsGenerator, 
CredentialsgeneratorJCE 

Unclear why two classes 
is needed 

HashedReturnCode 4.2.8.2 Truncated hash has only 
160 bits of output 

May be vulnerable to 
collision attack if 
adversary has partial 
control of return code 
inputs 

com.scytl.evote.protocol.signers 
package 

4.2.9 Note extensive code 
duplication between 
different Schnorr 
signature variants 

All variants appear 
secure, but not 
obviously so; consider 
separating the Schnorr 
primitive from the 
protocol logic 

  Signers pick the 
randomness from a 
different range than the 
encryption package 

Either way is safe, as the 
probability of a “bad” 
choice is negligible 

GeneratorSelector 4.2.10.2 The _paramSize 
attribute is only used for 
naming, so actual 
parameter sizes may not 
be consistent 

Consider verifying that 
the length of the data 
corresponds with the 
parameter 

CryptographicConstants 4.3.1.1 Specifies 3-DES as 
default symmetric cipher 

May not be consistent 
with project 
requirements 

CryptographicAlgorithms 4.3.1.2 generateSymmetricKey 
method builds a 192-bit 
3-DES key 

Keys generated are not 
suitable for use with the 
HMAC algorithm in the 
same package 

UtilsRBAC 4.3.2.1 cipherSymmetrically 
method contains 
cryptographic flaws 
related to IV and 
password hashing 

Method should be 
rewritten or replaced, as 
it has significant 
security weaknesses 
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TemporalDigestedFile 4.3.3.1 Use of MD5 for file 
integrity 

May not be secure if an 
adversary can control 
inputs; replace MD5 
with SHA256 or a MAC 

com.scytl.slogger package 4.4.1 Conversions between 
String and byte[] are not 
locale aware 

Inconsistent behaviour 
if locale can be modified 

SignedEncryptedHMac- 

EventProcessor 

4.4.1.7 Chained HMAC event 
log can be truncated 
back past a block 
boundary, at which point 
new events can be faked 

Use a write-only 
medium and/or live 
monitoring as an 
additional safeguard 
against tampering 

SignatureEventValidator / 
HMAC validators 

4.4.1.8 / 
4.4.1.9 

Signature validator will 
accept events that do not 
contain a signature 

Tricky interaction 
between the validators, 
seems fragile 

AuditSecureFileAppender 4.4.2.1 Implements its own 
signer and decryption 
routines 

Duplicates other project 
crypto classes, no clear 
rationale for duplication 

RemoteConnector 4.4.2.2 Opens an insecure 
remote socket 

Does not appear to be in 
use 

Utils 4.4.5.1 Includes a fixed 
SHARE_PIN, “11111111” 

Check whether this 
value is used by 
production code 

InteractiveKms 4.5.2.1 Calls to cipher method 
use insecure encryption 
routine from UtilsRBAC 

Fix and/or replace the 
code in UtilsRBAC 

CAGenerationCommand, 
RSAGenerationCommand 

4.5.2.2, 
4.5.2.3 

Note that password to 
CA keystore is written to 
disk as a plain text file 

Ensure that file can not 
be accessed by 
unauthorized actors, 
and is securely erased 
from disk 

SymmKeyGenerationCommand 4.5.2.7 Writes symmetric keys 
to disk using insecure 
routine from UtilsRBAC 

Fix and/or replace the 
code in UtilsRBAC 

 


