

Technical report
Source code audit of Norwegian
electronic voting system
Ministry of Local Government and
Regional Development

Tor E. Bjørstad, <tor@mnemonic.no>
Oslo, 2013-08-07

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 2

Executive summary

On September 9th 2013, parliamentary elections will be held in Norway. For the 2013
elections, 12 of the 428 local municipalities in Norway will offer their citizens the
opportunity to vote in advance over the Internet, as part of a trial project organized by the
Norwegian Ministry of Local Government and Regional Development.

Internet voting has previously been piloted in 2011, with ten municipalities participating in a
trial run for the local elections. The system is based on an advanced cryptographic voting
protocol that has been designed to maintain the security, anonymity and verifiability of votes
cast online, while requiring a minimum of trust between system components.

The Norwegian Ministry of Local Government and Regional Development hired mnemonic
to perform a “third party review of those parts of the [electronic voting system] that
implement cryptographic primitives and generate keys”, to verify that this is done securely
and correctly.

mnemonic has not discovered any critical cryptographic weaknesses that would preclude the
use of the Internet voting system in the forthcoming election.

The most serious technical issue discovered during the review is an error in an encryption
format for storing password-protected data. If patching this bug before the elections is
deemed too risky, we recommend compensating with operational safeguards, such as strictly
limiting and monitoring access to systems where such data is stored.

A number of other flaws and potential security issues have been uncovered, some of which
require further analysis by the vendor. Based on the audit as a whole, and our current
understanding of the voting system implementation, mnemonic would like to suggest four
main recommendations:

1. Address the security issue(s) caused by cryptographic weaknesses in the password-
based encryption function cipherSymmetrically in the UtilsRBAC class (4.3.2.1).

2. Ensure that sufficient safeguards are in place to maintain the integrity of the audit
events, despite potential vectors for dishonest parties to truncate or manipulate data
from the secure log appenders (4.4.1).

3. Verify that observations made relating to key generation (4.5) do not threaten the
overall security of the protocol, by inadvertently revealing keys, passwords or other
security-critical information.

4. Take concrete actions to improve the overall state of the source code, e.g. by
consolidating and refactoring duplicate code, cleaning up interfaces and
dependencies, documenting technical architecture and usage, and continually
improving quality assurance practices in the development process.

Key stakeholders should review the technical chapters 3 and 4 of the report in detail, and
take appropriate actions to evaluate each of the findings presented, and assess and manage
any associated risks.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 3

Table of Contents

Executive summary ... 2	
1	 Introduction ... 5	

1.1	 Project Mandate .. 5	
1.2	 Scope and limitations ... 5	
1.3	 Structure of the report .. 6	

1.4	 Summary of findings .. 7	
1.5	 About the author ... 7	

2	 Project Description .. 8	

2.1	 Methodology and tools .. 8	
2.2	 Project execution ... 8	
2.3	 Areas not covered ... 9	

3	 Source code review of Norway’s electronic voting system ... 10	
3.1	 Structure of the review .. 10	
3.2	 Introduction to the e-voting codebase ... 10	

3.3	 General impressions ... 11	
3.3.1	 Documentation ... 12	
3.3.2	 Security levels and encapsulation ... 13	

3.3.3	 Code duplication .. 15	
3.3.4	 Dead code ... 17	

3.4	 Automated testing .. 18	

3.5	 On random-number generation .. 20	
4	 Review of low-level security implementation ... 22	

4.1	 Analysis of com.scytl.jbasis .. 22	

4.1.1	 com.scytl.jbasis.crypto ... 22	
4.1.2	 com.scytl.jbasis.crypto.bc ... 24	
4.1.3	 com.scytl.jbasis.math ... 25	

4.1.4	 com.scytl.jbasis.shares .. 26	
4.2	 Analysis of com.scytl.evote.protocol ... 28	

4.2.1	 com.scytl.evote.protocol.ciphers .. 28	

4.2.2	 com.scytl.evote.protocol.digests ... 32	

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 4

4.2.3	 com.scytl.evote.protocol.engine .. 32	
4.2.4	 com.scytl.evote.protocol.generators ... 33	
4.2.5	 com.scytl.evote.protocol.integration.mixing.base .. 34	

4.2.6	 com.scytl.evote.protocol.integration.voting ... 34	
4.2.7	 com.scytl.evote.protocol.managers.keymanager .. 37	
4.2.8	 com.scytl.evote.protocol.managers.rcmanager ... 38	

4.2.9	 com.scytl.evote.protocol.signers .. 40	
4.2.10	 com.scytl.evote.protocol.tools .. 44	

4.3	 Analysis of other cryptographic packages .. 45	

4.3.1	 com.scytl.crypto ... 45	
4.3.2	 com.scytl.evote.vsframework.vscommon.client.utils .. 46	
4.3.3	 com.scytl.evote.counting.ecounting.crypto ... 48	

4.4	 Analysis of audit and logging framework ... 49	
4.4.1	 com.scytl.slogger ... 49	
4.4.2	 com.scytl.evote.auditing .. 53	

4.5	 Key generation .. 54	
4.5.1	 com.scytl.evote.vsframework.client.utils .. 54	
4.5.2	 com.scytl.evote.vsframework.client.commands.kms ... 55	

5	 Conclusions and final recommendations ... 59	
A	 Appendix: List of findings ... 60	

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 5

1 Introduction

On September 9th 2013, parliamentary elections will be held in Norway. In the weeks
running up to the election, twelve municipalities offer their voters the opportunity for
advance voting over the Internet, as part of a trial project organized by the Norwegian
Ministry of Local Government and Regional Development.

The electronic voting project was originally started in 2008, and a previous trial was held as
part of the local elections in 2011. General information about the project, including previous
research and evaluation reports, is available at
http://www.regjeringen.no/nb/dep/krd/prosjekter/e-valg-2011-prosjektet.html?id=597658.

The electronic voting system has been implemented by Scytl Secure Electronic Voting SA.
The back-end system is written in Java, and the voting client runs as Javascript in the user’s
browser. To ensure transparency and foster trust in the solution, system documentation and
source code is available to the public, at https://brukerveiledning.valg.no/ and
https://sourcecode.valg.no/websvn/.

1.1 Project Mandate
mnemonic was hired by the Norwegian Ministry of Local Government and Regional
Development to perform a “third party review of those parts of the [electronic voting
system] that implement cryptographic primitives and generate keys”, and verify that this is
done securely and correctly. The review has been carried out in the period from July 9th to
August 5th, 2013.

1.2 Scope and limitations
This review uses a bottom-up approach to analyse the cryptography used in the Java
implementation of the electronic voting system. The scope of this review is thus quite
narrow, and we wish to emphasise this fact strongly at this point.

As a consequence, there are several things that this report is not, including:

• a general code review covering functional aspects of the source code
• an audit of the election system configuration
• a risk assessment of the entire e-voting system
• a cryptographic evaluation of the secure voting protocol
• a political statement for or against online voting

There are also several interesting areas that this report does not cover, including:

• the Javascript voting client implementation
• operational aspects of how the voting system is used
• the security of technical infrastructure, including operating systems and networks
• trust relationships with third parties, such as the identity provider (Difi/ID-Porten)

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 6

In a technical source code audit it is easy to focus narrowly on negative findings, deviations
and errors, and it is worth pointing out that the Internet voting system appears to be
working well from a functional point of view, while implementing a very advanced, complex,
and distributed cryptographic protocol. This is in itself a significant achievement.

The central mission of this review has been to carry out a technical review of those parts of
the Java source code that implement basic cryptographic and security-related functionality.
In such a review, the key focus is on the correctness and appropriateness of the low-level
implementation. As a consequence of this scope, the high-level “bird’s eye” perspective of
how the different low-level primitives are composed and utilized by the protocol is not
always present.

As a secondary output from the audit, the report also presents more general criticisms and
suggestions for improving the overall quality of the e-voting project. These are both with
respect to the cryptographic implementation, and for the overall software quality, and are to
a greater extent subjective assessments, based on prior experience with the security of
comparably large software development projects.

Primary audiences for this report include project management, cryptographers, security
architects, developers, and other key stakeholders, both in the e-voting project and at Scytl.
It is also expected to be of general public interest. However, readers should be aware that the
main parts of the report (presented in Chapters 3 and 4) assume a high degree of technical
familiarity with the Java programming language, cryptographic techniques in general, and
the e-voting project and protocol in particular.

1.3 Structure of the report
The report is divided into five main chapters, and an appendix.

1. The current chapter provides context and introduction to the source code review, and
is useful as a less technical summary of the work that has been done.

2. Chapter 2 presents an overview of the activities performed during the course of the
project, along with a description of the methodology, tools and overall approach.

3. Chapter 3 provides an introduction to the e-voting source code, and contains general
technical remarks and observations from the review.

4. Chapter 4 is the main technical chapter of the report, and provides analysis of core
cryptographic packages in the e-voting project. The analysis is organized by Java
package and class, starting with basic functionalities and moving towards more
advanced applications.

5. Chapter 5 concludes the report, and summarizes the main takeaways and
recommendations from Chapters 3 and 4.

A. The Appendix provides a list of all specific findings and observations.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 7

1.4 Summary of findings
Findings in the report include more than 40 specific observations that may have a potential
security impact, as well as the (positive) validation of several of the implemented primitives.
These are described in Sections 3 and 4 of the report, and summarised in the Appendix.

It appears that our most serious finding is related to a password-based symmetric encryption
scheme defined in UtilsRBAC.java, which contains multiple cryptographic weaknesses and
can leak information about the encrypted data. The class is used in several places, including
during key generation. It should be noted that this encryption format appears to have been
defined outside the scope of the Internet voting implementation project.

Several observations are made regarding the jbasis library, which is a shared library written
by Scytl and used across many of their projects. The library contains several default settings
that are insecure or deprecated, and should not be used in new applications. Much of this is
likely to be due to backwards compatibility, but it means that parts of the library must be
used rather carefully to maintain security.

The secure-logger library used for auditing could in some situations permit an attacker with
file access to truncate and modify the logs, without this being clearly detectable within the
cryptographic framework. This is probably easiest to prevent through operational means,
such as a system for log monitoring and collection located in a different security zone. The
Norwegian system uses Splunk for this purpose.

Regarding the key generation routines used to set up an election, we have noted specific
areas where one must be careful to prevent sensitive information from leaking, for instance
due to master passwords being written temporarily to disk. In practice this should take place
on an isolated system with very restricted access and an encrypted hard drive, though these
are once again operational, rather than cryptographic, safeguards.

On a more general basis, it appears that the overall quality level of the Internet voting system
implementation has room for improvement, and there is a legitimate concern that the overall
complexity level of the system, including complicated and tangled dependencies between
different parts of the code base, may serve both to cause and to conceal security flaws.

1.5 About the author
Tor E. Bjørstad holds a Ph.d. in cryptography from the University of Bergen, and has
professional experience from some of the largest software development projects in the
Norwegian public sector in recent years. He has worked full-time as a cryptographer and
security expert since 2006, and has extensive experience with analysis of cryptographic
primitives and protocols, security standards, and application security testing.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 8

2 Project Description

Conducted by mnemonic as

Performing consultant Tor E. Bjørstad

Point of Contact Christian Bull, Ministry of Local
Government and Regional Development

Project started 2013-07-09

Report presented 2013-08-07

2.1 Methodology and tools
The source code review has not followed a strict formal methodology, though the overall
approach is inspired by the OWASP Code Review Guide1. Work has consisted of two main
phases; an initial period reviewing documentation and mapping the code base, followed by
the source code audit proper.

Initially the full Internet voting source code was downloaded and built, on a local Linux VM.
The first week of the review was spent getting acquainted with the project documentation
and the overall structure of the code. During this period, static analysis tools were applied to
identify potentially troublesome areas. Time was also spent to manually identify modules
implementing core cryptographic functionalities, as this was not explicitly described in the
project description or documentation.

The latter phase of the project consisted of the source code review itself, in which the code
has been reviewed package by package, and the findings (whether positive or negative) have
been documented in this report.

2.2 Project execution
During the initial phases of the assignment, it quickly became clear that the scope of the
review would be far greater than the estimated “3-5000 lines” of source code that was
indicated in advance of the project start. In fact, looking at two of the core cryptographic
packages, com.scytl.evote.protocol.ciphers and .signers, they comprise by
themselves 3000 lines of actual Java code (after discounting the licence header, blank lines,
and comments), and more than 5500 lines in total. Furthermore, this is only a small portion
of the code that has been covered by this review. As a consequence, the evaluation has taken
somewhat more time than initially estimated. It has also not been possible to have closer
look at how the different primitives are composed in the high-level protocols, such as
authentication, given the time available.

During the review, representatives from Scytl have been available for questions and
clarifications. In particular, Sandra Guasch has served as a main technical contact, and she

1 https://www.owasp.org/index.php/OWASP_Code_Review_Guide_Table_of_Contents

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 9

has given consistently rapid and helpful responses to technical questions, both to clarify
ambiguities and judge the impact of potential findings. The overall impression of Scytl has
been very positive in this respect.

The project has been particularly challenging to carry out, both because of a tight time
schedule, high workload, and unusually high complexity of the systems under review.
However, the report is still able to cover a lot of ground, and should serve as valuable input
for those working to improve the system.

2.3 Areas not covered
Cryptography is pervasive in the Internet voting source code – to such an extent that it
would be utterly infeasible to give every application of cryptographic techniques a full review
in the time allotted. Because of this, the central focus for this review has been the low-level
implementation and “core” functionality, rather than trying to find and check every place a
crypto interface is used by application logic.

As discussed with Christian Bull at the initial project meeting, the new Javascript client
implementation is outside the scope for this review. Our understanding is that this is because
the client is not considered to be trusted – voters should be able to detect a cheating or
malfunctioning client by verifying that return codes are correctly received. In parallel with
this project, a separate security test of the web application has also been carried out.

The Internet voting source repository contains significant amounts of code that is not used in
the production system – proof-of-concept code, legacy code that is no longer used, code used
for unit and integration testing, free-standing command line verification tools, and so forth.
Where we have been able to verify that the code is not part of the production system, we have
not looked at it in detail. It is, however, important to ensure that e.g. insecure test code is not
used in production by mistake or misconfiguration.

The security of third-party libraries, such as BouncyCastle, has not been reviewed. However,
looking only at the dependency, it is worth noting that the BouncyCastle packages used are
versions 1.44 / 1.45, whereas the latest release is 1.49. Similarly, spring-security-core 3.0.0 is
used, while the newest stable versions are 3.0.8 and 3.1.14. There is a known security flaw in
versions of spring-security-core prior to 3.0.52, though it is unclear if this flaw can be applied
to attack the Internet voting system.

Third-party dependencies that are not security libraries have not been examined at all. As a
rule, our clear recommendation is to keep third-party libraries patched to their latest stable
versions, whenever this is feasible.

2 CVE-2011-2894, see e.g. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2894

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 10

3 Source code review of Norway’s electronic voting system

3.1 Structure of the review
The analysis consists of two main parts: a short description of the e-voting source code and
general impressions, and a review of low-level cryptographic functionality and its basic usage
implementing core election processes.

Java source and class names are formatted using a fixed-width font, and classes are
referred to by package name, rather than by file path. Class names are generally (but not
always) unique across packages.

3.2 Introduction to the e-voting codebase
The full source code for Internet voting is available to the public, and can be downloaded
from https://sourcecode.valg.no/websvn/. It consists of 9 main parts: a set of tools for build
and deployment, two supporting libraries, and six main projects. In total, the code base
contains roughly 350 Java packages and 2200 classes.

Table 1 below indicates the different projects, and gives an estimate of their relative sizes,
measured in the number of lines of code (LoC). The estimate does not count configuration
files, unit tests, or third-party libraries. It also omits the size of comments and blank lines.

Project Version Purpose Approx. size

parent-config 2.3.1 Scytl build configuration, no code -

jbasis-parent 2.8.9 Supporting library implementing ”basic java” functionality,
including cryptographic interfaces

24 000 LoC

secure-logger 2.0.6 Supporting library for secure logging 4 500 LoC

auditing 3.2.4 Auditing module 5 750 LoC

authentication 3.2.4 Authentication module 11 250 LoC

counting 3.2.4 Ballot counting 38 000 LoC

evoting 3.2.4 e-voting application 25 250 LoC

protocol 3.2.5 e-voting cryptographic protocol algorithms 34 500 LoC

vsframework 3.2.4 Voting system framework 68 250 LoC

TOTAL 211 500 LoC
Table 1. Overview of e-voting codebase

As we can see, this is a rather large project. It should be noted that the above numbers do
include “dead” and unused code, proof-of-concept code, and various free-standing utilities
that are not part of production code as such. This is because these still remain as part of the
code base, and often not readily identifiable. One may also argue that the line count is a fairly
rough size metric, though it does give some indication of the overall complexity.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 11

Of the different modules, much of the cryptographic code is concentrated in the jbasis-
parent and protocol projects, and this is where most of the report’s attention will be
focused.

3.3 General impressions
Internet voting is a large and complex topic, and as such the implementation has much in
common with other large and complex enterprise software implementations. What makes
the e-voting project unique is the pervasiveness of cryptographic techniques. Large-scale
software engineering is challenging in itself, and it is unsurprising that large-scale
cryptographic engineering is harder still.

In fact, one of the most striking observations from this review is to which extent the source
code looks a lot like an average large enterprise software implementation, in terms of code
quality, documentation, fragility, consistency and so forth. Perhaps this is a natural
consequence of the scale of the project, yet perhaps also a sign that the focus on software
quality might be expected to have been stronger, in a project touches the core of our
democratic society.

As projects grow large, a certain amount of discipline and management is needed to keep the
complexity under control and the project on track. This is self-evident for measurable
quantities such as time and cost, but perhaps less obvious with respect to an intangible
concept like “software quality”. Yet establishing a structured approach to quality engineering
and continuous improvement throughout the development lifecycle can yield clear benefits,
particularly if started at an early stage and with strong management support.

From reviewing the e-voting source code, one gets the impression that many common
practices of reliable and robust software engineering may have been lacking at some point in
the development process, leading to significant technical debt. This may have been a
question of time, of cost, or of priorities, and there may also be historical reasons that
explain it. In the experience of the author, it is often also a question of culture.

General-purpose quality management frameworks (such as CMMI, ISO 9001, and TQM)
tend to focus on high-level processes and documentation, rather than prescribing specific
techniques or measuring compliance with those processes. Industry standards can be
somewhat more specific; the PCI standards for applications handling credit card data
specifically mandate formal code reviews, documented secure coding guidelines, and the
removal of test data and passwords prior to release.

Well-proven techniques such as test-driven development, mandatory code reviews, static
analysis, refactoring, use of checklists, and standards for documentation and code can all
yield tangible quality benefits, not least with respect to non-functional aspects such as
reliability, verifiability, readability, maintainability, extensibility, and other “-ilities”. Some
of these techniques may already be in use by the project, others may be less relevant, either
way one should consider how current processes can be improved.

At the end of the day, quality engineering is a means to an end, and the goal should be to
establish a project culture for delivering well-engineered high-quality software, rather than

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 12

adding an extra layer of bureaucracy by implementing some particular quality assurance
framework for its own sake.

Within the field of security, there is a common saying that there exist only two kinds of
software systems: those simple enough to be “obviously secure”, and those complex enough
to be “not obviously insecure”. Secure electronic voting may be so inherently complex, that a
fully implemented system will always fall in the latter category. Yet there is little doubt that
the current system could be made less complex, and that this would both reduce bugs,
improve verifiability, and lower the barriers of entry for the members of the public wishing
to inspect, review, and analyse the system.

3.3.1 Documentation

The electronic voting project has published a lot of excellent high-level documentation,
covering architecture, voting processes, cryptography, and so forth. This is available at
https://brukerveiledning.valg.no/Dokumentasjon/default.aspx. In contrast, we found the
low-level documentation of source code to be somewhat thin on the ground. This started
with unsuccessfully trying to compile the source code according to the supplied build guide3,
and the little source code documentation that exists did not always serve to clarify the
purpose and requirements of a particular package, method or class.

A key challenge for someone outside the project trying to understand the code, is that while
there are several diagrams showing the architecture logical relationships between the
different election actors (VCS, RCG, et al.) and election processes, it is not really self-evident
how they relate to the actual source code, and how the different source code modules relate
to each other. This is compounded by the fact that most source code comments and Javadoc
are quite thin, and generally focus on what the code does, rather than how it fits into the
overall architecture and processes.

For example, there are a large amount of interdependencies between the evoting, counting
and vsframework modules, and all of them build on classes from the protocol module. Yet it
has not been possible to find any kind of documentation defining the logical relationships
between the different projects, and how they are split.

Better documentation could be expected to simplify further development, maintenance and
refactoring of the system, and might also help promote code reuse. In addition to this,
mnemonic believes that improving the state of the source code documentation would be
likely to advance the stated project goal of transparency by making it somewhat easier for
members of the public to understand and review the code.

An additional challenge observed during the review is that there is often a lack of clear
distinction between classes that are live production code, and classes that are legacy
remnants, proof of concept code, or part of a test harness. In a number of places, the review

3 Downloading the source code and dependency tarballs and following
https://brukerveiledning.valg.no/Dokumentasjon/Dokumentasjon/Build_guide_V0.5.pdf was not
initially successful; additional manual configuration of the Maven build tool was required

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 13

has found code that uses insecure settings, but after some investigation does not appear to be
part of the “live” election system.

As a final example, consider the two classes CredentialsGenerator and
CredentialsGeneratorJCE, which can be found in the
com.scytl.evote.protocol.integration.voting.impl package. The classes are nearly
identical, defining the same methods, and containing the same comments. Neither class is a
subclass of the other. The following comment is the only overall description of what the
classes do:

/**
 * Cryptographic component used to generate the voter credentials.
 */

To someone who is not closely familiar with the entire code base, several immediate
questions are raised:

• Why are the classes different?
• What are the technical differences?
• When are they used?
• Where are they used?
• Which voter credentials are we talking about?

A bit of investigation indicates that the CredentialsGenerator class is used by the
cleansing classes in the counting module, as well as by the evoting module, while
CredentialsGeneratorJCE is used by the administrative interface in vsframework to
generate a voter’s individual keys. However, without access to additional low-level
documentation, it is quite time-consuming to understand fully the place of these classes, and
their relationship with each other.

Recommendation.

• Create or improve low-level documentation, describing the relationships between the
source code packages, and how they are fit into the overall system architecture

3.3.2 Security levels and encapsulation
From a cryptographic point of view, there would be few things nicer to review than code
using standard algorithms and primitives with internally consistent defaults, exposed via a
common high-level API. Ideally, most regular application code should not be required to
manage keys and other cryptographic objects; quoting the security expert Thomas H. Ptacek,
“if you’re typing the letters A-E-S into your code, you’re doing it wrong”.

The point being made by Ptacek is that the implementation and use of cryptography is
extremely difficult to get right, and that software developers should not be required or
expected to have that kind of specific domain knowledge. Software produced is likely to be

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 14

much safer if cryptographic functionality is systematically delegated to a (carefully reviewed
and tested) library with a simple API and secure default settings.

The Internet voting system uses a large number of different cryptographic algorithms and
parameters, and they are used pervasively throughout much of the code base. Algorithm
names (such as AES or SHA256) tend to be hardcoded into each class, and the (sometimes
inconsistent) choices made lead to somewhat variable security levels45. Looking at specific
algorithms, the general picture is as follows:

• Asymmetric algorithms such as RSA and El Gamal are consistently specified with
2048 bit keys. These are roughly equivalent to 112-bit security.

• For symmetric encryption, the Advanced Encryption Standard (AES) is preferred,
and used both with 128 and 256 bit keys (usually the latter). This provides 128 and
256 bits of security against brute force attack. Triple-DES (3-DES, DESede) is used as
a legacy replacement for AES in a few places. This uses a 192 bit key, but provides
only about 112 bits of security due to a meet-in-the-middle attack.

• As a secure hash function, SHA-256 is generally used. This provides 128 bits of
security against collision (if an attacker can control parts of the input data), and 256
bits otherwise. However, SHA-512 is used in a couple of places, providing twice the
security level. There is also one place in the code where MD5 is used, which seems
inadvisable, as it is not considered secure.

• As a message authentication code, HMACSHA256 is generally used. This provides
256 bit security against forgery.

• Random 100-bit passwords are generated in a few places, particularly to protect
PKCS #12 keystores. The password hashing used with PKCS #12 is expected to be
sufficiently slow, that this will provide roughly 128 bits of security; a brute force
attack on these password does not appear to be any easier than factoring the RSA
keys.

Cryptographic controls are typically bypassed, and not broken outright. However, it is
interesting to note that the “weakest” cryptographic components are actually the public RSA
and El Gamal keys, which are used heavily in the core voting protocol. Though 112 bits is
thought to be infeasible to break with today’s algorithms and computers, and thus secure, it
provides a rather slim security margin if improved attacks are discovered.

In the first half of 2013, there have been announced several significant theoretical advances
on solving the discrete logarithm problem in certain group structures, via improvements to
the index calculus algorithm. This is the mathematical foundation underpinning the security
of Diffie-Hellman and El Gamal, and is also quite closely related to the security of RSA. The

4 For a good meta-survey of studies comparing the effective key lengths of different cryptographic
algorithms, see http://www.keylength.com/
5 The security level of a cryptographic algorithm is usually specified in bits, with the phrase “k-bit”

security indicating that the cost needed to defeat the security is on the order of 2k computations

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 15

new results have been published in a series of research papers by Antoine Joux, Razvan
Barbalescu, and others6.

These developments currently only apply to groups of low characteristic, which are not used
by the e-voting system. However, there is a distinct (though small) possibility that better
algorithms for breaking Diffie-Hellman in Zp may also be forthcoming. If this were to
happen, it may become necessary to quickly move to significantly longer keys, or from
groups over Zp to elliptic curve groups, to maintain security. However, the latter would
require significant changes to the current e-voting implementation.

Recommendations.

• Review algorithm choices, to ensure that appropriate security levels are used
• Ensure agility, e.g. that cryptographic primitives are parametrised and can be

replaced with reasonable effort if necessary

3.3.3 Code duplication
Inconsistency also manifests itself in the fact that the same algorithms are not defined in one
place, but specified repeatedly. This can both lead to subtle bugs and inconsistencies, and
make it harder to modify the code later on, for instance to replace a cryptographic primitive.

The hard-coded string “SHA256” appears in nearly 40 different classes, but in a few places
SHA512 is used instead. Decryption interfaces using the RSA algorithm is implemented in at
least four different places (jbasis, protocol, com.scytl.crypto, and in the auditing framework),
and six different Base64 libraries are referenced (four from third party libraries, one in
jbasis, and one in secure logger; the latter two are versions 2.3.1 and 2.1.1 of the same open-
source implementation).

Finally, in the com.scytl.evote.protocol.signers package, five different variants of
Schnorr signatures can be found, with a high degree of overlap. In principle, a Schnorr
signature is a rather simple mathematical object, defined through four external parameters;
an El Gamal group (defined in our case by two primes p and q, and a generator element g), a
private key (represented as a single integer), data to be signed serialized in a canonical
format (e.g. as an octet stream), and a source of randomness.

Instead, the different signature variants implemented contain significant duplication of code,
but different external interfaces, and different semantic assumptions on what type of data
the input represents.

DecryptionPrivateKeySigner:

6 The most recent paper, by Barbulescu, Gaudry, Joux and Thomé: ”A quasi-polynomial algorithm for

discrete logarithm in finite fields of small characteristic”, http://arxiv.org/abs/1306.4244

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 16

public SchnorrSignature sign(
final BigInteger[] privateKeys,

 final ElGamalEncryptionValues encVoteOptValues,
 final BigInteger[] decVoteOptIDs,

final BigInteger[] publicKeys)

PartialDecryptionExponentSigner:

public SchnorrSignature sign(
final SecretVoterExponent secVoterExp,
final ElGamalEncryptionValues encVoteOptValues,
final PartialReEncryptionParameters partReEncVoteOptIDs,
final PublicVoterParameter pubVoterParam,
final BigInteger svcID
final CryptoFactory cryptoFactory)

PartialDecryptionPrivateKeySigner:

public SchnorrSignature sign(
final BigInteger[] partReEncPrivKeys,
final PartialReEncryptionParameters partReEncVoteOptIDs,
final BigInteger[] partReEncPubKeys,
final BigInteger svcID,
final CryptoFactory cryptoFactory)

ReEncryptionFactorSigner:

public SchnorrSignature sign(
final BigInteger[] reEncExponents,
final ElGamalEncryptionValues[] encVoteOptValues,
final ElGamalEncryptionValues[] reEncVoteOptValues,
final BigInteger[] publicKeys)

VoteOptionSigner:

public SchnorrSignature sign(
final EncryptionExponent exponent,
final ElGamalEncryptionValues encVoteOptValues,
final BigInteger[] publicKeys,
final BigInteger voterID)

Table 2. Schnorr signature variants in the signer package

The result of this is five different classes that implement the whole Schnorr primitive,
containing a large amount of partly duplicated code. From both a maintainability and
auditability point of view, it would probably be better to have one “core” Schnorr
implementation containing the cryptographic code, and smaller adapters (as required) that
encapsulate the various business logic surrounding it, such as whether it is a vote option or a
partial decryption exponent that should be signed.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 17

Recommendations.

• Identify security functionality implemented in multiple places, and consolidate /
refactor the affected code

• Consider increased separation between cryptographic logic and application / protocol
logic, to simplify validation

3.3.4 Dead code
The difficulty of distinguishing “live” production code from other artifacts in the source code
repository has previously been alluded to, and it is appropriate to give some examples of
code in the main source code repository which is actually not used in production.

That some of the code in jbasis library is unused by the e-voting code is perhaps not
unreasonable, since it is shared between multiple projects. There are however plenty of other
examples of unused code. Perhaps the most obvious are the settlement packages in the
counting project, as this is not handled as part of Internet voting.

A more tricky example is all code which was used exclusively by the Java voting client
(running in the browser), since this has later been replaced with a Javascript
implementation. This probably includes parts of the cryptographic code in the protocol
project, but it can be difficult to tell which parts.

It can also be quite difficult to distinguish classes that are part of test harnesses for specific
environments (e.g. system and integration testing), and which contain actual production
code. A rule of thumb is that the former contain hard-coded configuration, but this is not
always clear cut. A particularly odd instance is the HardcodedElectionManagementService
class, which contains several test passwords, but is also inherited from by the production
class, RemoteElectionManagementServiceImpl.

There are also a number of free-standing tools and utilities that appear not to be for use in
the production environment, but these are fairly simple to identify. This category includes
the tpm-central-tool in the auditing project, and the cast-vote-robot-tool in
vsframework.

Finally, there are a few places where unimplemented or buggy functionality is simply
commented out, or otherwise disabled, often making the remaining code redundant. This is
particularly common in jbasis, but also occurs elsewhere.

Recommendations.

• Indicate more clearly whether code is to be used in test or production, e.g. via
Javadoc

• Remove unused code from the main repository

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 18

3.4 Automated testing
An early step taken to get better acquainted with the code base, was by running automated
tools for static analysis. In particular, FindBugs7 with the “Find Security Bugs”-plugin, as
well as PMD8, were used. These are freely available tools that are simple to set up and run,
which use heuristic techniques to discover possible or probable code errors. While this type
of general source code review in general is beside the scope of this audit, it has been a useful
technique to discover possible problem areas and catch low-hanging fruit. In particular,
FindBugs has been quite helpful.

Using an hour to run FindBugs revealed a surprisingly large number of “hits”, i.e. possible
bugs in the code. While many of these are almost certainly false alerts, and some are minor
errors that have no impact on correctness or security, there are also apparent bugs that may
have greater consequences. An example of code that was flagged by FindBugs is the following
snippet:

com.scytl.evote.auditing.asyslog.SecureSyslogAppender#initialize():
byte[] lastEncSessionKey = null;
SecretKey secretKey = null;
PrivateKey userPrivateKey = cf.getUserPrivateKey(_pkcs12Certificate,

_pkcs12Password.toCharArray());
if (lastEncSessionKey != null) { … code omitted … }
final LoggingEventProcessorList loggingEventProcessor =
 LoggingEventSyslogProcessorListFactory
 .createLoggingEventProcessorList(
 cf.getUserPublicKey(_pkcs12Certificate),
 userPrivateKey, _numberLogLines, this,
 _timerLogMilliseconds, secretKey);

Table 3. Example of code flagged by FindBugs: strange handling of null values in code

The reader may note that lastEncSessionKey always will be null when it is checked, so the
if-clause looks unlikely to execute. Because of this, the secretKey parameter will remain
unset until it is passed as an argument to createLoggingEventProcessorList()9. What
the developer actually intends to happen is hard to understand from the code, at least in
isolation.

Another useful set of findings came from the “Find Security Bugs” plugin, which among
other things looks for insecure sockets, old cryptographic algorithms, and weak random
number generator. Most of the time, java.security.SecureRandom is used to provide
strong randomness, but there are a number of places where it is not.

7 http://findbugs.sourceforge.net/ and http://h3xstream.github.io/find-sec-bugs/
8 http://pmd.sourceforge.net/
9 It appears that this parameter may not actually be used for anything by the
createLoggingEventProcessorList method.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 19

com.scytl.evote.protocol.integration.voting.RCGCrypto:
public RCGCrypto(final CryptoProvider cryptoProvider,
 final ElectionManagementService kms) {
 super(cryptoProvider, kms);
 _random = new Random(new Date().getTime());
 _rcManager = new ReturnCodeManager();
}

Table 4. Example code flagged by Find Security Bugs plugin: why is a "Crypto" class using an insecure random
generator?

In this case, it is not immediately clear why the Return Code Generator crypto class should
be using an insecure random number generator. It has thus been looked into more closely,
with the analysis being presented in 0 and 4.2.6.2.

Some of the error categories that recur frequently in the FindBugs reports are the following:

1. Code paths that (may) allow a parameter to be null when evaluated, causing a
nullPointerException if it occurs. Manual analysis on a case-by-case basis is
needed to judge whether this will happen in practice, and whether this may impact
the correctness or security of the code.

2. Direct conversions between String and byte[] that don’t take encoding into
account. This will usually be fine as long as the locale and encoding is fixed (e.g. when
exchanging data between different systems), but may otherwise cause strange
compatibility errors. There may also be impacts relating to how data is processed
(e.g. whether multi-byte characters are fully processed as input to a hash). We
observe that a few conversions are locale-aware, but that most are not.

3. Matters concerning thread safety, synchronization, and methods that manipulate
static objects.

4. Situations where references to internal objects are exposed, or references to external
objects are used in protected contexts.

5. Dead code, and other “strange” code constructs which may not work as intended.
6. Return values from certain system calls, notably methods such as

java.io.File#delete, are sometimes unchecked. These calls do not throw
exceptions if they fail, and may thus fail silently.

It is highly recommended to use static analysis tools (whether open-source or commercial)
as an integrated part of the general quality control regime in the e-voting project. This works
as a good supplement to regular unit testing, and can be integrated in the build process in a
similar way. More than one tool can be used in tandem, as they often implement different
heuristics and catch different types of flaws.

Domain-specific static analysis tools may also be helpful for specific purposes, such as
uncovering security flaws early in the development lifecycle. There exist multiple dedicated
commercial tools for static security analysis, though they have not been used as part of this
audit.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 20

In a system such as e-voting, which presumably has particularly stringent requirements of
correctness and overall quality, it seems strange that such simple aids are apparently not in
use. Static analysis has also been carried out by third-party researchers in the past, yielding
similar results, which makes it even more surprising that it has not yet been adopted.

Recommendations.

• Use one or more static analysis tools as an aid to improve code quality
• Integrate such tools in the regular build and test process

3.5 On random-number generation
Quoting the American mathematician Robert Coveyou, “Random Number Generation is too
important to be left to chance”. Indeed, high-quality randomness that is cryptographically
secure, is of utmost importance for nearly all the other cryptographic algorithms used for
electronic voting. Because of this, it is an obvious area that an adversary may try to attack.

The insecure java.util.Random generator is referred to by about a dozen classes in the e-
voting codebase, and all of these have been inspected manually. A few of these occurrences
are worth a closer mention, though most of the use appears innocuous:

• com.scytl.evote.protocol.integration.voting.RCGCrypto, as previously
mentioned, uses an insecurely seeded (and thus predictable) Random instance to
select which zero knowledge proofs from the VCS to verify. Checking only a fraction
of the zero-knowledge proofs is acceptable because the probability of successful
cheating decreases exponentially with the number of votes, and has been analysed
previously. However, a cheating VCS might try to predict the RCG random seed, in
order to guess which proofs will be checked. The probability of successful cheating
will still remain low, but it may be prudent to use a secure random generator here.

• com.scytl.evote.vsframework.client.commands.kms.PrintVotingCardComman

dsUtil: An insecure Random instance is used in the generatePrimeNumbers
method, which, confusingly, generates random nine-digit integers that are not tested
for primality. This does not seem to have a security impact, but at the very least
contradicts the method name and source code comments.

• com.scytl.jbasis.math.BigNumber takes a Random instance which may or may not
be secure as part of its constructor, and as a parameter to the safePrime method.
Thus the caller must be responsible for passing an appropriately strong random
generator at all times; a BigNumber returned from the safePrime method may be
“safe” in a purely technical sense, yet useless for cryptography.

• com.scytl.jbasis.util.StringUtils takes a Random instance as input to utility
methods such as randomString, with the same implications as for the previous class.

• com.scytl.evote.evoting.votingclient.Randomizer is an insecure randomizer,
but does not appear to be in use.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 21

• com.scytl.evote.protocol.integration.voting.parser.model.EmlElectoral

Model uses an insecure random generator to shuffle the party lists. This is probably
acceptable; the order of the party lists should be randomly selected, but there does
not appear to be a secrecy requirement related to this.

For the rest of the code base, when randomness is needed, java.security.SecureRandom
is used. This is a good choice. However, we observe that the default constructor for
SecureRandom is used throughout (with a single exception).

It does not appear that any settings for the random generator is specified via configuration,
which means that the actual “Secure Random” generator instance utilized is likely to be
implementation dependent, with defaults that will vary between platforms and providers. On
a Linux system, the default provider would normally be expected as Sun’s NativePRNG
utilizing /dev/urandom as the underlying entropy source, but this is hard to verify when it is
not specified explicitly.

Recommendations.

• Review use of insecure pseudorandom generator java.util.Random
• Make specification of SecureRandom algorithm and provider explicit, through

SecureRandom#getInstance or via configuration

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 22

4 Review of low-level security implementation

This chapter covers technical analysis of low-level security and crypto functionality in the e-
voting system. Much of the basic functionality is implemented by Scytl in the
com.scytl.jbasis-library, but only some parts of this is used by the Norwegian e-voting
code. In the e-voting project itself, much of the cryptographic code is located in the
com.scytl.evote.protocol project. However, there are also a number other classes
scattered through the other parts of the code base. We also look into the
com.scytl.slogger (secure logger) library, which is independent of the e-voting code and
can be evaluated by itself. Finally, we consider how the cryptographic code is used key
generation.

4.1 Analysis of com.scytl.jbasis
The jbasis project consists of 19 packages, implementing basic Java functionality. This covers
low-level cryptographic interfaces, smart card token handling, XML and utility classes. The
project appears to be fairly old, and belonging to a common codebase that Scytl utilizes in
multiple settings, not only for electronic voting in Norway.

As a result of this, the project contains a significant amount of code that is either retained for
legacy compatibility, or provides functionality which does not appear to be in use by the e-
voting system. For instance, the classes used to support IAIK as a Java Cryptographic
Extension (JCE) provider are not relevant to our purposes. We will try to limit our analysis
to those parts of jbasis that are in use by the Norwegian e-voting system.

A central part of the jbasis code are the crypto packages, which provide abstract interfaces to
low-level cryptographic functionality, as well as a concrete instantiation built on the third
party BouncyCastle library. Flaws in this part of the code may lead to significant and
pervasive vulnerabilities.

4.1.1 com.scytl.jbasis.crypto
The package offers a lot of cryptographic functionality, though mainly in the form of abstract
interfaces, which are realized in the com.scytl.jbasis.crypto.bc package. However,
there are also some central definitions here.

4.1.1.1 CryptoFactory.java	
CryptoFactory follows the Abstract Factory design pattern and generally only defines the
interface. However, it also defines a number of constants.

SYMMETRIC_CIPHER = "DESede/ECB/PKCS5Padding";
DESEDE_CBC_SYMMETRIC_CIPHER = "DESede/CBC/PKCS5Padding";
AES_SYMMETRIC_CIPHER = "AES/ECB/PKCS5Padding";
AES_CBC_SYMMETRIC_CIPHER = "AES/CBC/PKCS5Padding";
SIGNATURE_ALGORITHM = "SHA1withRSA";
SECRET_KEY_ALGORITHM = "DESede";
AES_SECRET_KEY_ALGORITHM = "AES";

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 23

PBE_SECRET_KEY_ALGORITHM = "PBEWithMD5AndDES";
SECRET_KEY_LENGTH = 24;
HASH_METHOD = "SHA1";
HMAC_HASH_METHOD = "HMACSHA1";
KEYPAIR_ALGORITHM = "RSA";
PUBLIC_KEY_LENGTH = 2048;
PUBLIC_KEY_LENGTH_PROPERTY = "jbasis.public.key.length";
PBE_ITERATIONS = 100;
PBE_SALT = {(byte) 0xA9, (byte) 0x9B, (byte) 0xC8, (byte) 0x32,
(byte) 0x56, (byte) 0x35, (byte) 0xE3, (byte) 0x03 };

There are a couple of strange things to take note of here:

• Triple-DES is used as the default cipher, while AES (Advanced Encryption Standard)
must be specified explicitly. Because the default mode is ECB (electronic codebook),
a different mode must be specified if one wants to encrypt more than one block of
data (64 bits with 3-DES, 128 bits with AES).

• The default settings for password-based encryption, specified by the parameters
PBE_SECRET_KEY_ALGORITHM, PBE_ITERATIONS and PBE_SALT, are not
secure. Investigation indicates that these PBE settings are not actually used by the
Norwegian e-voting system, but it may be a concern for other users of the library.

The implication of these defaults is that unsuitable cryptographic parameters may be chosen
when a CryptoFactory is used directly with default settings. Motivation for these parameter
choices appears to be backwards compatibility. This seems somewhat fragile, as a developer
using the jbasis library will have to consistently specify appropriate algorithms, rather than
using secure defaults.

While it does not seem like these defaults are used to a significant extent by the e-voting
code, we shall keep it in mind when we look at the library usage moving forward.

4.1.1.2 Other	 classes	
Most of the package just provides the generic interfaces, but there are a few other classes
with actual content.

• AsymetricKeySize [sic] defines the constants KEY_SIZE_1024 and KEY_SIZE_2048.
• CA.java encapsulates basic Certification Authority behaviour, and is used to handle

certification requests. Certificates are issued with serial numbers generated with
java.util.Random, which means that these are potentially predictable. This is not a
problem.

• CryptoEncoding converts between DER encoding and PEM format.
• CryptoUtils contains two methods to compare public and private keys, even if the

keys are issued by different crypto providers. These only check that the (RSA)
exponent and modulus are equal, and will not work with other ciphers. It also
contains a method for signature verification (which does not appear to be in use) and
the skeleton of a method for hashing all the files in a directory (which is not
implemented).

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 24

All of this seems reasonable. Other classes in the package are either simple interface
definitions, or do not appear to be in use by Norwegian e-voting. The latter category includes
the classes CryptoVerifier, FastBitCommittment, FastBitCommitmentVerifier, and
HashAdapter.

4.1.2 com.scytl.jbasis.crypto.bc

This package contains an actual crypto instantiation, using the BouncyCastle JCE provider.
External entry points are primarily through BCCryptoFactory, BCPrivateKey,
BCPublicKey, and BCSecretKey.

4.1.2.1 BCCryptoFactory

The BCCryptoFactory class is just a very thin wrapper around the other BC-classes, which
instantiates these as needed. For secure random number generation it uses a private final
instance of java.security.SecureRandom. This behavior generally seems secure.

Note that the methods createSecretKeyFactory and createSecretKeyWithPassword will
create password-based encryption schemes with the insecure PBE defaults from the base
CryptoFactory class.

4.1.2.2 BCPrivateKey	 and	 BCPublicKey	
The BCPrivateKey class implements an RSA private key object, with a straightforward
constructor (based on a modulus and a private exponent) and utility classes. There are also
methods for reconstructing a BCPrivateKey object based on an input stream or a byte array,
but these are heavily commented out. Comments indicate that this code may not be stable,
and it appears not to be in use.

The corresponding BCPublicKey class contains the same functionality, but for public RSA
keys instead.

4.1.2.3 BCSecretKey	
The BCSecretKey class provides various ways to produce a secret key object. The essential
thing to note here is that calling BCSecretKey without any arguments will generate keys
suitable for the default algorithm, which is triple-DES (“DESede”).

Thus it is necessary to keep an eye on how these are initiated. Providing a KeySpec or a
SecretKeySpec as input will be necessary to get keys that are suitable for e.g. AES.

4.1.2.4 Other	 classes	
The remainder of the classes mainly implement their generic interfaces by acting as
wrappers for the BouncyCastle JCE provider.

Going through the interfaces class by class it can be easy to overlook errors. Most of the
interfaces with BouncyCastle appear to be correct. However, we did observe one bug in the
BCPKCS7Envelope class, which makes the following incorrect call to the provider:

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 25

CMSEnvelopedDataGenerator.generate(new CMSProcessableByteArray(data),
CMSEnvelopedDataGenerator.DES_EDE3_CBC, 128, "BC");

Bug.

The org.bouncycastle.cms.CMSEnvelopedDataGenerator class provides the following
method signature:

generate(CMSProcessable content, java.lang.String encryptionOID,
int keySize, java.lang.String provider)

However, triple-DES must be used a 192 bit key.

4.1.3 com.scytl.jbasis.math

The math package contains the BigNumber class, along with smaller supporting classes for
polynomial evaluation and modular computation. This is used in connection with Shamir
Secret Sharing (see Error! Reference source not found.).

4.1.3.1 BigNumber	 4.1.3.1 BigNumber	
The BigNumber class is a decorator wrapping a regular BigInteger, with a few extra
methods to support modular polynomial arithmetic. We shall comment on those features
which are actual extensions.

• The value PRIME_CONFIDENCE = 100 indicates that probable primes should have a
probability of at least 1 – 2100 of actually being prime. This is consistent with the
default settings for BigInteger.probablePrime().

• The constructor BigNumber(final long bitLength, final Random rnd) casts
bitLength from long to int, truncating in the process. This seems unlikely to be a
problem, as actual bit lengths are not expected to exceed a few thousand.

• The higherPrime() method works by generating a strong random prime of the same
order of magnitude as the input, adding it to the input value, and finally searching for
the next higher prime. This appears to be a secure approach, as it avoids any obvious
correlation with the starting value.

• The modPowAlt() and modPowCrt() methods attempt to provide optimized
replacements for BigInteger.modPow(), that is to say, efficient methods of
computing the expression “xy modulo n”. Note that Chinese Remainder Theorem-
based exponentiation may leak information about the factorization of an underlying
RSA modulus, through the time it takes to execute.

• The safePrime() method computes a prime p = 2q+1 such that p and q are both
prime.

The class appears secure, provided that SecureRandom is used as a generator whenever a
secure BigNumber is needed. This is only done explicitly in the higherPrime() method;
in other cases a Random object is passed as a parameter. Care should also be taken with

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 26

using the custom exponentiation methods, though these are apparently not in use by the
Norwegian e-voting project.

4.1.4 com.scytl.jbasis.shares

The shares package implements Shamir’s Secret Sharing algorithm10, along with associated
helper classes for persisting shares. The idea behind the algorithm is to represent a secret
string as a random (k-1)’th degree polynomial over a finite field, and distribute n shares
representing points. Given threshold knowledge of k unique points, the polynomial (and thus
the secret) can be reconstructed by interpolation, whereas k-1 shares will yield no
information at all.

The com.scytl.jbasis.eraser package is used extensively to ensure that garbage
collection is performed whenever secret data should be erased from memory. This is a
somewhat arcane topic, and we have not performed a detailed analysis of the garbage
collection scheme itself. However, while the Eraser class is used extensively throughout the
electronic voting system, the impression is that it may not be used consistently.

The high-level interface for the package is ShareAlgorithm, which is implemented by
ShamirAlgorithm. The ShareManager class is used as a bridge between the Shamir scheme,
and a variety of connectors for securely persisting the shares, e.g. to a deck of smart cards.

4.1.4.1 ShamirAlgorithm	
The high level Shamir algorithm implementation is fairly straightforward. The two main
methods are split and merge, which interface with ShamirShadowManager to do the actual
work.

split: String secret, int shares, int threshold, (optional int modulus)
1. Encode the secret as a BigNumber
2. Set up a new ShamirShadowManager for the parameters.
3. Invoke ShamirShadowManager.marshall()
4. Return a Vector of shares

recover: Vector shares
1. Set up a new ShamirShadowManager to recompute the secret
2. Invoke the getter method secret() to recover the actual value
3. Convert it back to a String

There is also a merge method, which combines two (presumably sub-threshold) vectors of
shares into a single vector.

4.1.4.2 ShamirShadowManager	
The ShamirShadowManager class is used to implement the actual secret splitting and
merging. We consider the two processes in turn.

ShamirShadowManager: constructor (splitting):
1. Check the input parameters (shares, threshold, modulus if present)

10 Invented by Adi Shamir, see http://en.wikipedia.org/wiki/Shamir's_Secret_Sharing

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 27

2. Generate a random LagrangePolynomial of degree threshold-1
3. Evaluate the polynomial at 1, 2, … to obtain the share values

ShamirShadowManager.marshall():
1. Iterate through the list of points
2. Compute the String representation of each share
3. Output the vector containing all the shares

Moving on to the process of merging the shares, we have the following pseudocode, which
looks correct.

ShamirShadowManager: constructor (merging):
1. Add each share to the vector containing the points
2. Verify that all the parameters are consistent
3. Verify that we have enough shares
4. Reconstruct the LagrangePolynomial
5. Evaluate it at 0 to obtain the secret

Vulnerability.

The code to generate the random Lagrange polynomial in the constructors for splitting
selects polynomial coefficients from the wrong distribution, which violates the theoretical
security proof for Shamir Secret Sharing.

Recall that the polynomial coefficients must be randomly chosen from the set {0, 1, …,
modulus – 1). In the constructor, the code sets the BigNumber m equal to modulus – 1, and
proceeds to compute the coefficients as follows:

From the com.scytl.jbasis.shares.ShamirShadowManager constructor:
new BigNumber(m.getBitLength(), new SecureRandom(m.toByteArray())));

Consider the two methods being called here.

• The getBitLength() method wraps BigInteger.bitLength(), which (for positive
values) “Returns the number of bits […] in the ordinary binary representation.”

• The BigNumber constructor wraps BigInteger (int numBits, Random rnd),
which “Constructs a randomly generated BigInteger, uniformly distributed over the
range 0 to (2numBits - 1), inclusive”.

To see why the code is incorrect, assume for example that the prime modulus is 19, which
means that coefficients should be selected uniformly at random from the range [0, 18]. The
value of m is 18 and the m.getBitLength will be 5. However, the random BigNumber
coefficient that is subsequently generated will be uniformly selected from the range [0, 31]
(e.g. 25-1).

The polynomial mathematics classes will perform the requisite reductions (mod 19),
meaning that the subsequent computations will be correct despite coefficients being out of
range. However, the bug means that the Shamir polynomial coefficients will be selected from
the wrong statistical distribution, that is no longer uniform.

Impact and recommendation.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 28

It looks as though this bug will cause the theoretical security proof for Shamir’s Secret
Sharing scheme to fail. Initial analysis indicates that practical exploitation of the issue is
expected to be hard, but could conceivably be attempted by an adversary with access to
several shares (yet fewer than the threshold). We have not had time to perform a detailed
impact analysis.

The issue has been communicated to Scytl, who have acknowledged the finding as a bug.

4.1.4.3 Low-‐level	 persistence	 classes	
The ShareManager class works as a link between the secret sharing implementation, and the
low-level routines for persisting the shares. These include SCConnection and
SCConnector11, which define the interfaces, and the supporting utility classes
ConnectionType and ConnectorOptions. There are also specific implementations:

• FileConnection / FileConnector – for writing to local file
• TokenConnection / TokenConnector – for writing to an actual smart card

Writing secret shares to a local file with FileConnection must only be used for testing, as
this implementation appears to use the insecure default Password-Based Encryption settings
from the Jbasis crypto package, described in Section 4.1.1.1. There may also be other security
requirements enforcing that key shares from production must only be persisted to a secure
storage medium.

Regarding the token classes, we note that the TokenConnection.readShare and
writeShare methods use triple-DES (CryptoFactory.SECRET_KEY_ALGORITHM) to encrypt
data on the tokens, rather than AES. This may not be consistent with e-voting project
requirements, though it is likely to be secure.

Apart from this we have not found anything remarkable in these classes.

4.2 Analysis of com.scytl.evote.protocol
The protocol-3.2.5 project contains implementations of central cryptographic functionality
used by the Internet voting protocol. In many cases this is complementary to the jbasis
crypto code, other times it works as a replacement. The degree of overlap is not clearly
documented, and when we look at some of the more complex implementations, we shall have
to keep track of which library is used where.

4.2.1 com.scytl.evote.protocol.ciphers

The ciphers package implements five different basic cipher types, an encrypted envelope,
and a partial decryptor for ElGamal votes.

4.2.1.1 AsymmetricCipher	
The AsymmetricCipher class provides basic asymmetric encryption functionality, using as
default RSA/ECB/PKCS1Padding and the standard SunJCE crypto provider. Alternate

11 SC stands for “Share Card” in this context

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 29

constructors lets the caller specify the algorithm and/or provider manually. The suitable
cipher object is retrieved from the JCE provider via Cipher#getInstance. This seems safe,
provided that PKCS#1 v1.5 RSA encryption is what you want.

Additional methods are provided to encrypt and decrypt, either byte arrays of serializable
objects. The implementations of encrypt and decrypt seems reasonably straightforward.

It is interesting to note that getBlockSize() is called throughout to check whether a block
cipher is in use, as this should never be the case for a regular asymmetric cipher such as RSA.
The additional code to handle this case seems to add a bit fair of unnecessary complexity,
and it is unclear what value it brings.

It is worth noting that there is also an AsymmetricCipher class in jbasis, and that these may
easily be confused.

4.2.1.2 ElGamalCipher	
The ElGamalCipher12 provides access to the BlockElGamalEngine, which is defined in the
com.scytl.evote.protocol.engine package. It implements the same mechanisms as
AsymmetricCipher to encrypt and decrypt either serialized objects or byte streams.

As opposed to the previous class, the inner encrypt(final byte[] bytes, final
BigInteger publicKey) and decrypt methods explicitly handle input messages that are
longer than a single block.

encrypt: byte[] bytes, BigInteger publicKey:
1. Obtain input / output block sizes from the BlockElGamalEngine
2. Compute the number of blocks, and the remaining space
3. Pad the bytes with zeroes to a block boundary
4. Use the BlockElGamalEngine to encrypt the blocks one by one
5. Wrap the encrypted data and the number of zero bytes (remainder) in a

BlockElGamalEncryptedData object

decrypt: EncryptedData encData, BigInteger privateKey:
1. Unwrap the encrypted data and remainder from the input
2. Obtain the input / output block sizes
3. Use the BlockElGamalEngine to decrypt the blocks one by one
4. Output the decrypted byte array

This seems straightforward, and should maintain confidentiality as long as the core
BlockElGamalEngine is implemented securely. Note that El Gamal’s encryption scheme
without a secure padding scheme is malleable; in particular it is not secure if the adversary is
able to decrypt chosen ciphertexts. Because of this, the algorithm is not suitable for all
applications.

4.2.1.3 JCEEnvelope	
In the JCE terminology, an envelope consists of a message encrypted with a random
symmetric key, with the key being encrypted with an asymmetric mechanism. This is in the

12 Named after Taher El Gamal, see http://en.wikipedia.org/wiki/ElGamal_encryption

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 30

style of Cryptographic Message Syntax13. Encryption schemes of this type are also commonly
referred to as “hybrid encryption”, with the terms “Key Encapsulation Mechanism” (KEM)
and “Data Encapsulation Mechanism” (DEM) being used in the provable security literature
to refer to the asymmetric and symmetric components. Several KEM/DEM schemes (with
KEMs based on e.g. RSA and ElGamal) are standardised in ISO 18033-2.

The JCEEnvelope class implemented by Scytl builds an envelope using
AES256/CBC/PKCS5Padding as the data encapsulation mechanism, and a user-supplied
CryptoFactory which is used to provide an AsymmetricCipher (4.2.1.1) instance for the key
encapsulation. This uses PKCS #1 v1.5 padding as default; if replaced with OAEP padding
this the scheme would be similar to the RSAES-KEM defined in ISO 18033-2.

createEnvelopedData:
CryptoFactory factory, PublicKey pubkey, byte[] plaintext:

1. Generate a random secret AES key
2. Construct a random IV using SecureRandom
3. Encrypt the plaintext with the AES key
4. Get an AsymmetricCipher object from the factory
5. Encrypt the AES key and IV with the AsymmetricCipher and the pubkey

readEnvelopedData: CryptoFactory factory, PrivateKey pubkey,
byte[] encKey, byte[] encIv, byte[] encryptedData:

1. Get an AsymmetricCipher object from the factory
2. Decrypt the secret AES key
3. Decrypt the random IV
4. Decrypt the data

There are a few features of the JCEEnvelope class that can be contrasted with the standard
hybrid encryption schemes.

• It is not necessary to encrypt the random initialization vector, this does not give any
security benefit.

• The standardized schemes in ISO 18033-2 schemes use an additional Message
Authentication Code (MAC) together with the symmetric encryption, to ensure the
integrity of the symmetric ciphertext. This is an important part of the strong security
proofs for the hybrid schemes.

• Using a hybrid construction without a MAC means that the JCEEnvelope will almost
certainly not satisfy the strong IND-CCA2 notion of security. Using
AsymmetricCipher default settings, it is likely to satisfy the weaker IND-CPA
(“semantic security”) notion.

• Note that the AsymmetricCipher instance is from com.scytl.jbasis.crypto
(4.1.1) and not the package implementation (4.2.1.1)

• The security of the enveloped scheme is completely dependent on the externally
specified factory instance and its AsymmetricCipher instance being securely
initiated

13 Defined in RFC 3369, based on the earlier PKCS #7

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 31

One should consider implementing one of the ISO schemes for enveloped data in this
situation. Adding a MAC would prevent e.g. bit-flipping attacks on the symmetric ciphertext.

4.2.1.4 MessageCipher	
The MessageCipher class can be used to encrypt a String with the BlockElGamalEngine.
The class appears identical to ElGamalCipher, apart from working on a String rather than a
byte[]. It is unclear why this is implemented as a separate class.

4.2.1.5 SymmetricCipher	
The SymmetricCipher class is similar to the AsymmetricCipher class in 4.2.1.1, but using
AES/CBC/PKCS5Padding and a minimum key length of 128 bits. Again, the code makes
systematic checks of _cipher.getBlockSize, this time to determine whether it use an
initialisation vector (IV).

Since _cipher.getBlockSize will be nonzero whenever a block cipher is used, this does not
quite make sense. For instance, if a stream cipher were to be specified, getBlockSize should
be zero, and no IV will be used. This is likely to be insecure, since it seems to imply
keystream reuse if encrypting multiple times under a fixed key. As far as we can tell, the
ciphers used by e-voting will all be block ciphers and follow the secure code path. However,
this once again seems like a very fragile state of affairs.

4.2.1.6 VoteOptionCipher	
The VoteOptionCipher class acts as an interface to (re-)encrypt or decrypt a series of vote
options with El Gamal, using the underlying VoteOptionElGamalEngine (see 4.2.3.2). The
main feature of this class is that it encrypts a large vector of vote options, using a similarly-
sized vector of public keys, and a fixed secret exponent which is reused for all the options.

This is a somewhat unusual El Gamal optimization, as it would normally be very dangerous
to reuse the secret exponents. However, provided that there are no simple algebraic
relationships between the vote options or public keys, there does not appear to be any
“trivial” attacks on the scheme. It is assumed that the e-voting project has performed a
thorough cryptographic analysis before making this protocol optimization.

Re-encryption is done by multiplying the old ciphertext with another “round” of of El Gamal:

• phinew = phiold * publicKeyexponent (mod p)

• gammanew = gammaold * generatorexponent (mod p)

It is somewhat difficult to consider the security of this computation without looking more
carefully at the protocol context in which it is used, but there are no obvious weaknesses in
this.

4.2.1.7 VoteOptionPartialDecryptor	
The VoteOptionPartialDecryptor class is used to partially (re-)encrypt or re-decrypt
encrypted vote options, using the underlying VoteOptionPartialDecryptorEngine class.
This is a different kind of re-encryption than in the previous sections:

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 32

• param1 = phioldexponent

• param2 = gammaoldprivateKey

• param3 = param1 * param2

• gammanew = gammaoldexponent

Once again there are no obvious weaknesses in this computation, but it is somewhat difficult
to evaluate the security without more careful evaluation of the protocol context in which it is
used, since it differs from the usual “textbook” El Gamal scheme.

4.2.2 com.scytl.evote.protocol.digests

There is only one class in this package, HashFunction.

4.2.2.1 HashFunction	
The HashFunction class is a simple implementation to provide access to a cryptographic
hash function through the JCE provider. By default, SHA-256 is used. This is a good default
choice for a secure cryptographic hash function. The UTF-8 input encoding is explicitly
specified when converting the input string to a byte array, meaning that the encoding will be
consistent across platforms. This seems very reasonable.

4.2.3 com.scytl.evote.protocol.engine

The engine package contains three different special-purpose ElGamal implementations.

4.2.3.1 BlockElGamalEngine	
The BlockElGamalEngine is conceptually fairly straightforward. It is used to encrypt an
array of bytes by dividing it into blocks and applying El Gamal encryption to each block. It
needs to be initialized with a secure El Gamal key, e.g. a triple (p, q, g) where q and p = 2q+1
are prime, and g is a generator of the group. The following pseudocode is used to encrypt /
decrypt a single block.

encryptBlock: byte[] in, int inOff, int inLen, BigInteger publicKey:
1. Check that the input length is appropriate
2. Represent the input array as a BigInteger
3. Generate a random exponent k which is not equal to -1, 0, 1, nor

greater than the group order p
4. Compute the ciphertext tuple (gamma, phi) from input, k and publicKey
5. Convert it back to a byte array and return

decryptBlock: byte[] in, int inoff, intLen, BigInteger privatekey:
1. Check that the input length is appropriate
2. Split the input array in two, and convert to two BigIntegers
3. Decrypt using the private key and the El Gamal identity
4. Convert to byte array
5. Do post-processing (e.g. add leading zeroes) and return

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 33

This appears correct for encrypting individual blocks, under the usual preconditions for
secure El Gamal encryption, i.e. as long as an adversary is not able to decrypt chosen
ciphertexts, and random exponents k are never re-used.

Since El Gamal is malleable and no chaining mode is defined, there is no implied relation
between blocks. Unless the integrity of the overall ciphertexts is maintained (using a MAC or
a signature), an adversary would be free to shuffle, swap or modify blocks in a longer string.
This may be a potential vulnerability, depending on the usage.

4.2.3.2 VoteOptionElGamalEngine	 and	 VoteOptionPartialDecryptorEngine	
The VoteOptionElGamalEngine is used to (re-)encrypt and decrypt vote options. The vote
options are represented as BigInteger instances, and the class simply performs modular
arithmetic on these values according to the definition of El Gamal. All parameters (e.g. keys
and exponents) are passed as external arguments.

The final engine class, VoteOptionPartialDecryptorEngine, is used for partial encryption
and decryption of vote options. This is again reasonably straightforward modular arithmetic,
based on the definition of how the computation should be carried out.

In both cases, the implementations look straightforward, but usage (accessed via the
VoteOptionCipher and VoteOptionPartialDecryptor ciphers) should be checked against
the protocol definitions.

4.2.4 com.scytl.evote.protocol.generators

The generators package includes functionality to generate Diffie-Hellman and El Gamal
keys.

4.2.4.1 DHKeyGeneratorHelper	 and	 DHParametersHelper	
This pair of classes contains necessary functionality to produce a Diffie-Hellman key.

The DHParametersHelper class is used to pick a Diffie-Hellman group. The relevant
methods are:

• generateSafePrimes: Find a prime q and safe prime p = 2q+1, of a specified bit
length and with specified certainty (of the primeness of p and q)

• selectgenerator: Find a generator g the subgroup of order q

Both methods appear correct. They use SecureRandom for their entropy.

Meanwhile, DHKeyGeneratorHelper implements the following methods:

• calculatePrivate: produces a random private key of specified length
• calculatePublic: derive the corresponding public key using the

Once again SecureRandom is used as the random generator.

4.2.4.2 ElGamalKeyPairGenerator	 and	 ElGamalParametersGenerator	
This pair of classes uses the aforementioned Diffie-Hellman helpers to produce ElGamal
keys. The implementations appear to be quite straightforward, without any complex logic.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 34

4.2.5 com.scytl.evote.protocol.integration.mixing.base

The “integration mixing base” implements zero-knowledge proofs for vote mixing, building
on other protocol classes, including VoteOptionCipher (4.2.1.6) and the various
SchnorrSignature variants (4.2.9).

4.2.5.1 ReEncryptionProofs,	 ReEncryptionProofGenerator	 and	 ReEncryptionVerifier	
These classes are used to represent, generate and verify Schnorr signatures on secret
exponents that are used for re-encryption at mix-nodes. To generate a proof on a vote group
collection, each vote group is signed using the secret exponents that were used to re-encrypt
it, with the ReEncryptionFactorSigner class from the signer package (4.2.9.4). This is
done for each vote group in the collection.

4.2.5.2 VoteGroupManager	
While not implementing much cryptographic functionality as such, the VoteGroupManager
class is notable for being the only place in the e-voting codebase where the underlying
random number generation (RNG) algorithm and provider for use with SecureRandom is
explicitly specified in the source: “SHA1PRNG” and “SUN”. In all other cases observed, the
default constructor is used.

Explicitly specifying the algorithm and provider is actually quite good practice, since it
ensures that one does not obtain a default value with unexpected properties. For the
purposes of the shuffling that is done in the class, the choices are perfectly appropriate.

Indeed, SHA1PRNG is often the default SecureRandom algorithm, particularly on Windows
machines.

4.2.5.3 	 VoteMixer	 and	 VoteMixingIOValidator	
The function of vote mixing is to validate, shuffle and re-encrypt votes as part of a mix
network. It is perhaps worth noting that a regular AsymmetricSigner (4.2.9.1) is used for
this purpose, rather than the various El Gamal signers used elsewhere in the package. Re-
encryption is done using the VoteCipher class, and shuffling is done with
java.util.Collections#shuffle utilizing SecureRandom for strong randomness.

4.2.6 com.scytl.evote.protocol.integration.voting
The voting package and its sub-packages contain a fair bit of crypto protocol implementation
for integration between the different voting components. A central element is the
ElectionManagementService interface, which specifies 88 (!) core methods for election
management.

4.2.6.1 BaseCrypto	
The BaseCrypto class is a base class that is extended by several of the component-specific
crypto classes. It contains a number of default methods to verify the integrity of a vote. It
specifies the use of UTF-8 encoding, and SHA-256 as a hash algorithm. The following
security-relevant methods are implemented:

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 35

• verifyEncryptVoteSig checks that the JSON vote data contained in a VoteBean
object has a valid RSA signature, and that the certificate is consistent with the voter’s
Common Name, authentication time, and the election identifier.

• verifyAuthenticationToken uses the Authentication Service certificate to check an
user’s authentication token.

• verifyVoteZKProof uses the VoteOptionSigner (4.2.9.6) class to verify a zero-
knowledge proof (Schnorr signature) protecting the vote options contained in an
encrypted vote.

• createVoteHash computes a SHA-256 hash over a VoteBean object, an
authentication token and a timestamp.

The two first methods use an ElectionManagementService instantiation to perform the
actual verification. BaseCrypto is extended by the ConfigCrypto, PrinterCrypto,
RCGCrypto and VCSCrypto classes. The latter two implement additional verification that
should be analysed.

4.2.6.2 RCGCrypto	
The RCGCrypto class contains a few additional crypto methods for the return code generator.

In the verifyPartialDecryptSig method, the VCS public key is used to verify a (RSA)
signature from an AsymmetricSigner, on the contents of a PartialDecryptBean.

The verifyExpZKProof and verifyKeyZKProof methods check (El Gamal) zero-knowledge
proofs of knowledge on partially decrypted votes from the VCS, made with the
PartialDecryptionExponentSigner and PartialDecryptionPrivateKeySigner
respectively.

The isOptimized method is a simple routine that returns true with 12.5% probability. It is
used elsewhere to determine whether the two partial decryption ZK proofs shall be verified,
as an optimisation to reduce the workload on the RCG. Interestingly, the method uses an
insecure java.math.Random instance initialized using new Date().getTime() as the seed.
This seems dubious, since it means that the VCS might try to guess the seed to predict which
ballots will be verified by the RCG, since it can guess when the RCG was rebooted. It is
unclear how this would affect the security of the protocol, but it would be more conservative
to use a SecureRandom instance for this purpose.

The final method of interest is generateReturnCodes. It contains slightly more logic, and is
worth describing in more detail.

generateReturnCodes: PartialDecryptBean partialDecrypt,
VoterIdentifier voterIdentifier, String electionType,
String electionEventId:

1. Obtain the RCG symmetric key from the ElectionManagementService
2. Initialize a VoteOptionPartialDecryptor cipher instance
3. Use it to partially decrypt the data in the PartialDecryptBean, using

the RCG’s ElGamal key retrieved from the ElectionManagementService
4. For each of the partial return codes obtained (that are not empty),

generate a return code using the partial return code, voter ID and

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 36

symmetric RCG key
5. The actual return code generation is performed by the

com.scytl.evote.protocol.managers.rcmanager.ReturnCode class. It uses
HMACSHA256 to digest the partial return code and voter ID.

With the exception of the potentially questionable random numbers generated by the
isOptimized method, the RCGCrypto class appears to be correct.

4.2.6.3 VCSCrypto	
The Vote Collection Server also has a dedicated crypto class, serving as the counterpart of
RCGCrypto. Of particular interest is the partiallyDecryptVote method, which is used to
produce the PartialDecryptBean objects that are processed by the three verification
methods in RCGCrypto.

partiallyDecryptVote: VoteBean vote, VoterIdentifier voterIdentifier:
1. Obtain the VCS symmetric key from the ElectionManagementService
2. Initialize a VoteOptionPartialDecryptor cipher instance
3. Generate a secret voter exponent for re-encryption, which is derived

(via the keyManager) by encrypting the voter ID with the VCS
symmetric key

4. Re-encrypt the encrypted votes using the secret voter exponents and
the concatenation of the VCS ElGamal keys

5. Generate the corresponding public parameters used for partial
decryption

6. Generate the two zero-knowledge proofs, for knowledge of the secret
voter exponent and the VCS ElGamal private keys

7. Digitally sign the partially re-encrypted vote and the two zero-
knowledge proofs, using the VCS RSA key.

8. Wrap everything into a PartialDecryptBean

There is another variant of the method, partiallyDecryptVoteWithoutSigning, which
proceeds identically but skips step 7. It does not seem to be in active use.

The VCSCrypto class contains a large number of other methods, but these appear to perform
comparatively simple signature and signature verification calls, using the appropriate access
methods.

4.2.6.4 ElectionManagementService	 and	 its	 implementations	
The ElectionManagementService class specifies a central interface collecting all the central
functions needed to set up an election, and is used extensively by the other classes.

There is an immediate implementation of the interface in
HardcodedElectionManagementService containing hard-coded credentials and
configuration, which can be used directly for testing. The actual implementation used for
production should be RemoteElectionManagementServiceImpl from the
com.scytl.evote.evoting.vcscommon.service package.

However, there is a rather strange class inheritance relationship at work here: the
RemoteElectionManagementServiceImpl does not only implement the interface general, it
also extends the HardcodedElectionManagementService class. With the tremendous

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 37

amount of methods defined, it is somewhat tricky to verify that the “REMSI”
implementation in fact correctly overrides all those methods that use hard-coded settings,
and that the methods that are not overridden are all safe. Moreover, there are a few classes
which explicitly instantiate a Hardcoded service object, including BaseCrypto.

While there have not been any obvious implementation bugs observed, this state of affairs
seems unnecessarily tangled and fragile.

4.2.6.5 CredentialsGeneratorJCE	
The CredentialsGeneratorJCE class uses the jbasis package to generate a key pair, a
certificate signing request, and finally a signed certificate in PKCS #12 representation,
wrapped in a CredentialBeanJCE. This is used to provide a dedicated key pair for each
voter.

A Common Name for each voter certificate is computed using a SHA-256 hash of the voter
ID, which means that they are opaque identifiers, but not secret. The certificates are signed
using the default algorithm from jbasis, i.e. SHA1withRSA.

This appears reasonably straightforward.

4.2.7 com.scytl.evote.protocol.managers.keymanager
The KeyManager class in this package is used as an invoker to perform all key-related
operations, i.e. creation, storage and retrieval of any kind of cryptographic key material. It
does not implement any logic of its own. However, some of the other classes in the package
do. Much of the content here supplements or replaces that of the jbasis library, and one
should be careful as to which classes are actually used.

Many of the classes are simply provider interfaces that define simple defaults and interfaces
to the underlying providers. In this case we do not give a detailed description of each one,
but note the relevant default parameters found.

CertAuth DIGITAL_SIGNATURE_ALGORITHM_DEFAULT =
"SHA256withRSA";

CertificateAuthority SIGNATURE_ALGORITHM = "SHA256withRSA";

Certificate
CertificateSigningRequest

CERTIFICATE_TYPE = "X509";
DIGITAL_SIGNATURE_ALGORITHM_DEFAULT =
"SHA256withRSA";
PROVIDER_NAME_DEFAULT = "SunRsaSign";
CHARACTER_ENCODING = "UTF-8";

GenerateKeyPair KEY_PAIR_GENERATION_ALGORITHM_DEFAULT = "RSA";
KEY_BIT_SIZE_DEFAULT = 2048;

GenerateSecretKey KEY_GENERATION_ALGORITHM_DEFAULT = "AES";
KEY_BIT_SIZE_DEFAULT = 256;

GenerateKeyStore KEY_STORE_TYPE_DEFAULT = "JCEKS";
PROVIDER_NAME_DEFAULT = "SunJCE";

PKCS12 PROVIDER_NAME_DEFAULT = "SunJSSE";
KEY_STORE_TYPE = "PKCS12";

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 38

CHARACTER_ENCODING = "UTF-8";

PublicVoterParameter DEFAULT_PROVIDER_NAME = "SunJCE";

SecretVoterExponent SYMMETRIC_CIPHER_ALGORITHM =
"AES/CBC/PKCS5Padding";
DEFAULT_PROVIDER_NAME = "SunJCE";

SymmetricKey KEY_GENERATION_ALGORITHM_DEFAULT = "AES";

In this case, the options selected are reasonably self-consistent, in the sense that secure
choices of SHA-2, AES and RSA are consistently favoured as default algorithms. It remains
inconsistent in the sense that the defaults offer different security levels:

• AES-256 provides roughly 256 bits of security
• RSA-2048 offers ~112 bits of security14 against factoring, a similar level as 3-DES
• SHA-256 offers ~128 bits of security against collisions, a similar level as AES-128

With the chosen parameters sizes (and the similar choice of 2048-bit keys for El Gamal,
though this is not specified separately in these classes), the public-key algorithms are likely
to be the least resistant against brute-force attacks. Given current knowledge, even 112 bits of
security will not be feasible to attack in the short and medium term, but the security margin
with respect to future breakthroughs is lower for RSA and El Gamal than for the other
algorithms.

4.2.7.1 ElGamalShareManager,	 RSAShareManager	
The ElGamalShareManager and RSAShareManager classes are specific extensions of the
com.scytl.jbasis.shares.ShareManager class (4.1.4.3) used to split and reconstruct keys
with Shamir’s secret sharing algorithm. The former is the most complex adaptation, as it
splits an array of El Gamal keys into an array of split shares. Both classes also override the
saveNext and readNext methods for interfacing with smart card storage, though it is not
obvious from the code alone why this is needed.

4.2.8 com.scytl.evote.protocol.managers.rcmanager

Similarly to the previous package, the rcmanager classes are used to manage return codes.
Once again the ReturnCodeManager class itself just provides the entry point, and the actual
logic is implemented in the various classes. We will have a closer look at the cryptographic
defaults specified, as well as specific classes.

Class Parameters

AnswerCode
EmptyVoteCode
PartyCode
PositionCode
PreferenceCode
ReturnCode

HMAC_ALGORITHM = "HMACSHA256";
The MAX_BIT_SIZE of the codes is 14.

14 Following the NIST SP 800-57 recommendations from 2012, see
http://csrc.nist.gov/groups/ST/toolkit/key_management.html

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 39

BallotIdentifier HMAC_KEY_BIT_SIZE = 256;
HMAC_ALGORITHM = "HMACSHA256";

DecryptedCodeColl
DecryptedCode
EncryptedCodeColl
EncryptedCode

SECRET_KEY_BIT_SIZE = 256;

HashedReturnCode HASH_ALGORITHM = "SHA256";
TRUNCATED_DIGEST_BIT_SIZE = 160;

The various Code-classes all use variants of HMAC as a message authentication code, with
SHA-256 as the hash. This is a primitive that provides a very high security margin (roughly
256 bits). Similarly, the encryption classes use 256 bit keys and invoke the default
parameters from com.scytl.evote.protocol.ciphers.SymmetricCipher (4.2.1.5), which
should result in AES/CBC/PKCS5Padding being used as the default algorithm.

The HMAC key length is only specified in the BallotIdentifier class. In the other cases,
the size will also be 256 bits, but the value is specified under the hood in
com.scytl.evote.protocol.managers.keymanager.GenerateSecretKey and not
explicitly in the code.

4.2.8.1 AnswerCode,	 EmptyVoteCode,	 PartyCode,	 PositionCode,	 PreferenceCode,	 and	
ReturnCode	

These classes are all nearly identical. Each class is used to generate a particular type of
return code, with the generate() method being the key component for this.

The significance of the various *_MAX_BIT_SIZE = 14 of the various classes is that a return
code shall be exactly 14 bits of length, i.e. selected from the range [0, 8191]. Why this
particular range was chosen (rather than e.g. [0, 9999]) is not obvious.

Every class generates its return code in the following manner:

1. Convert the code identifier (e.g. “Answer ID”, “Empty Vote Constant”, “Party ID”,
etc.) and the voter identifier to a byte array.

2. Use the Return Code Generator’s (arbitrary) symmetric key to generate a SecretKey
for the HMAC.

3. Compute a HMAC over the byte array from (1) using the secret key.
4. Convert the HMAC digest to a BigInteger, and truncate it modulo 2MAX_BIT_SIZE – 1
5. Return the resulting short integer.

This will give statistically random return codes that are related to the hashed identifiers and
the RCG secret key in a deterministic way. Of course, since the codes are truncated to short
values, it is trivially possible to generate a “valid” code (with probability 1:214 of success)
using brute force guessing. This is presumably irrelevant for the protocol, as the probability
of multiple correct guesses quickly becomes negligible.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 40

4.2.8.2 HashedReturnCode	
The HashedReturnCode class is also “strange”, in the sense that it makes a seemingly
arbitrary transformation that does not make sense without further context. In short, it takes
a ReturnCode object, hashes it using SHA-256, then truncates the output to 160 bits. This is
a somewhat nonobvious, though secure, way to produce a random-looking 20-byte message
digest.

We note that the collision resistance of this construction is down to 80 bits, due to the
birthday paradox applied to the truncated hash. This means that a brute force attack to find
two ReturnCode objects with the same hash (given sufficient degrees of freedom) might be
feasible in theory, for a well-funded and patient adversary.

The overall security margin for this construction is thus not very high. On the other hand we
expect that spending massive computational effort to find two return codes that hash to the
same value is unlikely to be a cost-effective approach for an attacker wanting to harm the e-
voting system.

4.2.9 com.scytl.evote.protocol.signers

Corresponding to the ciphers package (4.2.1), this is where the local implementations of
signature algorithms are located. The package contains a remarkable number of slightly
different implementations of Schnorr signatures, with minor differences in purpose and
method signatures. While all the implementations look superficially correct for their
particular use cases, this is noticeably difficult to verify by hand.

4.2.9.1 AsymmetricSigner	
The AsymmetricSigner class is the only signer which is not a custom implementation based
on El Gamal and Schnorr’s signature scheme, instead defaulting to the SunRsaSign JCE
provider to utilize the SHA256withRSA algorithm specification. This is expected to be secure
as long as the RSA modulus is of at least 2048 bits.

The sign and verify operations are specified for both byte arrays and serializable objects,
and simply wrap the update and sign/verify methods from the provider.

4.2.9.2 DecryptionPrivateKeySigner	
The class uses a Schnorr15 signature as a zero-knowledge proof that the signer knows the
private key used to decrypt a set of vote option identifiers. The SHA-256 algorithm is used as
a hash. Main cryptographic logic is implemented in the update, sign and verify methods.

update: ElGamalEncryptionValues encVoteOptValues,
BigInteger[] decVoteOptIDs, BigInteger publicKey,
MessageDigest messageDigest:

1. Represent all the decVoteOptIDs as one large input byte string
2. Compute the product of all the decVoteOptIDs (modulo p)
3. Compute the product of the phi values from encVoteOptValues

15 Named after Claus-Peter Schnorr, see http://en.wikipedia.org/wiki/Schnorr_signature

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 41

4. Hash the decVoteOptID byte array, and represent it as a BigInteger
5. Compute phi and gamma for the zero-knowledge proof as either:

a. gammaZKP = encVoteOptValues.getGamma(),
phiZKP = phi-product * decVoteID-product-1

b. gammaZKP = encVoteOptValues.getGamma()-1,
phiZKP = decVoteID-product * phi-product-1

6. Compute the derived generator and public key for the proof:
a. _generatorZKP = _generator * gammaZKPhash (modulo p)
b. _publicKeyZKP = _publickey * phiZKPhash (modulo p)

sign: BigInteger[] privateKeys, ElGamalEncryptionValues encVoteOptValues,
BigInteger[] decVoteOptIDs, BigInteger[] publicKeys

1. Initialize a SHA-256 message digest
2. Compute a representative of the publicKeys as the product of all the

keys in the array (modulo p)
3. Call DecryptionPrivateKeySigner.update()
4. Securely generate the randomness for the Schnorr signature, in the

range [2, q-1], and exponentiate it
5. Hash the randomness, group generator, and the public key

representative (which is the data to be signed)
6. Compute the private key part of the signature using the privateKeys

array, the randomness from step 4, and the hash from step 5

verify: SchnorrSignature sig, ElGamalEncryptionValues encVoteOptValues,
BigInteger[] decVoteOptIDs, BigInteger[] publicKeys:

1. Repeat the 3 first steps of the signing procedure
2. Recompute the exponentiated randomness from the signature
3. Recompute the hash from the randomness, generator and public keys
4. Verify that the result is the same as in the signature

This implementation of Schnorr signatures appears correct. There are three minor
observations regarding the sign method. Neither has a significant security impact. These
observations are common to all the Schnorr signature methods in this package.

Observations.

• The randomness is generated in the range [2, q-1], rather than [2, q-2] in the
BlockElGamalEngine. In practice choosing q-1 as the exponent would be a poor
choice, but the probability of generating that value with SecureRandom is in any case
negligible, so there is not really any point in checking.

• In the original description and security proofs of Schnorr’s signature scheme, the
hash function should output uniformly random elements of Zp rather than n-bit
strings. However, a paper by Neven, Smart and Warinschi16 from 2009 indicates that
this should be fine as long as the hash function output length is at least twice the
security level. Thus, using SHA-256 without any further processing should be
sufficient for 128-bit security.

• If 256-bit security is desirable, SHA-512 should be used.

16 Hash Function Requirements for Schnorr Signatures, http://www.neven.org/papers/schnorr.html

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 42

4.2.9.3 PartialDecryptionSigner	 and	 subclasses	
The PartialDecryptionSigner class, together with subclasses
PartialDecryptionExponentSigner and PartialDecryptionPrivateKeySigner, are
used to provide zero-knowledge proofs on secret keys used for partial decryption.
Functionally this is quite similar to the previous signer, but with a somewhat different API
and different data input.

In PartialDecryptionSigner, we find the following utility methods:

computeCoeficients: int numBetas, CryptoFactory cryptoFactory,
MessageDigest messageDigest:

• Generates numBetas pseudorandom coefficients, by iterating SHA-256

• The initial seed is produced from the passed messageDigest, so this
object must contain some data when the function is called

generateBeta: BigInteger alpha1, BigInteger alpha2,
CryptoFactory cryptoFactory, MessageDigest messageDigest:

• Generate a single pseudorandom coefficient, by invoking messageDigest
(likely SHA-256) on the alphas, and hashing the result again with
SHA-256

generateRandomNumber: BigInteger q:

• Generate a secure random number in the range [2, q-1]

The motivation for these utility methods is completely opaque from the source code alone –
no rationale or context is provided, and an external description of the algorithms is
necessary to understand why any of this is needed or useful. The generateRandomNumber
method is identical to the inline code in DecryptionPrivateKeySigner, and again
arbitrarily chooses the range [2, q-1], rather than [2, q-2] which is used in other places.

In the two subclasses, actual signing and verification is implemented. These proceed more or
less identically, as below:

PartialDecryptionPrivateKeySigner#sign():
1. Verify that input parameters are consistent
2. Initialize a SHA-256 hash with the public inputs
3. Call computeCoeficients [sic] using the initialized hash
4. Derive a private key representative, based on an array of input keys,

and the pseudorandom beta coefficients
5. Generate randomness for use in the Schnorr signature
6. Compute alphas from randomness and the data to be signed
7. Call PartialDecryptionSigner#generateBeta and use beta as the hash in

the Schnorr signature
8. Compute the remainder of the Schnorr signature using the derived

private key

Arithmetically, these implementations appear correct, in the sense that a Schnorr signature
is produced on the alpha values using a derived private key. The alphas and keys are
computed differently in the two cases, but the implementation logic is very similar.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 43

4.2.9.4 ReEncryptionFactorSigner	
This is yet another re-implementation of Schnorr signatures for a particular use-case. In this
case, the private key for signing is generated from the array of re-encryption exponents
(reEncExponents) that is used as input. The data that is signed, includes the hash of the set
of public keys used to encrypt vote option identifiers. The effective generator used for the
signature is computed by hashing the encrypted and re-encrypted votes.

Once again the core Schnorr signature primitive looks secure, but based on the source code a
bit of thinking is needed to understand what it actually signs.

sign: BigInteger[] reEncExponents, ElGamalEncryptionValues[]
encVoteOptValues, ElGamalEncryptionValues[] reEncVoteOptValues,
BigInteger[] publicKeys

1. Compute the following BigInteger products (all modulo p):
a. publicKey = product of elements of publicKeys []
b. gammaProd1 = product of gammas in encVoteOptValues
c. gammaProd2 = product of gammas in reEncVoteOptValues
d. phiProd1 = product of phis in encVoteOptValues
e. phiProd2 = product of phis in reEncVoteOptValues

2. Compute the message as the hash of the products, as well as the
ElGamal group generator

3. Derive an offset generator: generatorZKP = generator * publicKeymessage
4. Sign the publicKey product of terms, using the derived generator as a

base, and the reEncExponents as the private key

Thus it is in fact the set of public keys that are signed with the re-encryption exponents.

4.2.9.5 SchnorrSignature,	 SchnorrRandomExponent	 and	 SchnorrRandomExponentPool	
These are simple container classes for signature objects and exponents, and do not contain
cryptographic logic. The two latter classes are of unclear benefit; SchnorrRandomExponent
seems only to be used by VoteOptionSigner, and SchnorrRandomExponentPool is passed
around as an argument in the PartialDecryptionSigner classes, but does not seem to be
used.

4.2.9.6 VoteOptionSigner	
This is the fifth variation over a Schnorr signature implementation, to fit yet another specific
use-case. As such, much of the code is identical to the previously analysed incarnations, with
minor variations to trip up the unwary reader.

The most obvious differences from the previous implementations is that the
com.scytl.evote.protocol.integration.eraser.Eraser is used more aggressively to
ensure that secret information is safely garbage collected, and that the data to be hashed is
hex encoded for compatibility with JavaScript.

The class appears to implement a secure Schnorr signature, but with the many competing
implementations and slightly different method APIs throughout, one has to be very careful
to use the right algorithm for the application context.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 44

4.2.10 com.scytl.evote.protocol.tools

The “protocol tools” packages contain a number of free-standing command-line tools. It is
unclear how these are used, but they should be checked.

4.2.10.1 ParametersGenerator	
The ParametersGenerator tool is used to generate El Gamal parameters q and p = 2q+1,
based on the desired bitlength and the certainty required for primality testing.

The actual p’s and q’s are generated via a call to ElGamalParametersGenerator from the
generators package (4.2.4.2), and the ParametersGenerator performs a self-test for
additional verification that the set of El Gamal parameters are sound.

The default choices for bitlength and certainty are 2048 bits and 1-2-100, respectively, which
is consistent with choices made elsewhere.

4.2.10.2 GeneratorSelector	
The GeneratorSelector tool is used to pick a generator element, based on group
parameters q and p provided as input. Presumably, it runs right after the
ParameterGenerator tool.

Generators are actually generated via a call to ElGamalParametersGenerator (4.2.4.2) from
the generators package, and the class makes a self-test for additional verification that the
parameters are sound.

The default size of the El Gamal parameters is given by PARAM_SIZE_DEFAULT = 2048,
which is consistent with other classes. However, the size parameter, whether the default is
used, or it is parsed from command line, is not actually used to verify the length of the
parameters. In fact, it is only used in the input and output filenames. This is fine if the tool is
run in conjunction with ParameterGenerator, but in general the code would be more robust
if it did not rely on the filenames being correct.

4.2.10.3 	 PrimalityTester	
The PrimalityTester tool is simple command-line wrapper for the library function
BigInteger#isProbablePrime, with user-selectable certainty. The default value is 1000,
which is exponentially more certain (and thus significantly slower) than the choice of 100
used elsewhere.

4.2.10.4 PrimeNumberGenerator	
The PrimeNumberGenerator tool is, somewhat misleadingly, not used to generate primes in
itself, but to determine primes that are quadratic residues (or quadratic non-residues) for
specified El Gamal parameter sets. These primes are then used as vote option identifiers.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 45

4.3 Analysis of other cryptographic packages

4.3.1 com.scytl.crypto
The com.scytl.crypto package is for some reason not found as part of the
“Internettstemmegivning” code repository, but the sources can be found in the “Skanning”
repository. It is used by the com.scytl.evote.auditing and com.scytl.slogger
packages, to provide “boxed” cryptographic functionalities.

According to source code comments, the aim of the package is to provide a simple pre-
configured high level cryptographic API for achieving simple tasks.

4.3.1.1 CryptographicConstants	
The CryptographicConstants class defines the following set of defaults:

public static final String ASYMMETRIC_KEY_ALG = "RSA";
public static final int ASYMMETRIC_KEY_LENGTH = 2048;
public static final String ASYMMETRIC_CIPHER_ALG = "RSA/ECB/PKCS1Padding";
public static final String ASYMMETRIC_SIGNATURE_ALG = "SHA256withRSA";
public static final String SYMMETRIC_KEY_ALG = "DESede";
public static final String SYMMETRIC_CIPHER_ALG =
"DESede/CBC/PKCS5Padding";
public static final String HMAC_ALG = "HMACSHA256";
public static final String HASH_ALG = "SHA-256";
public static final String KEYSTORE_TYPE = "pkcs12";
public static final String CERTIFICATE_TYPE = "X.509";
public static final String CERT_CHAIN_BUILDER_TYPE = "PKIX";
public static final String SECURE_RANDOM_ALG = "SHA1PRNG";
public static final int SECURE_RANDOM_SEED_LENGTH = 20;

This can be compared with similar default parameters specified in other places, notably the
jbasis (4.1.1.1) and protocol (4.2.7, 4.2.8) packages.

The most notable choice in the above list, is probably the use of 3-DES as
SYMMETRIC_KEY_ALG and SYMMETRIC_CIPHER_ALG. While 3-DES provides an adequate
security level of roughly 112 bits, it is a distinctly less secure option than AES, and also
provides significantly poorer software performance.

4.3.1.2 CryptographicAlgorithms	
The CryptographicAlgorithms class provides a packaged interface to basic primitives:
symmetric and asymmetric encryption, digital signature, key generation, random byte
generation, a message authentication code, and a hash. The algorithms are specified using
the hard-coded identifiers from CryptographicConstants.

A feature here that may take some by surprise is that the generateSymmetricKey method
uses a key generator initialized for use with SYMMETRIC_KEY_ALG, i.e. triple-DES. Thus a 192-
bit key will be generated. This may not be what is expected if the key is to be used with the
(256-bit) message authentication code primitive; the MAC will still be secure, but at the 192-
bit security level, rather than at full strength.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 46

4.3.2 com.scytl.evote.vsframework.vscommon.client.utils

4.3.2.1 UtilsRBAC	
In the otherwise unassuming UtilsRBAC class, we find the method cipherSymmetrically
which implements password-based encryption. The primary purpose of this methods
appears to be decrypting access control tokens used, which are issued externally and used for
role-based access control. As such, the implementation has presumably been written to
conform with an external specification which may not be under Scytl’s direct control.
However, it looks like the utility is also used to encrypt data “internally” within the voting
system.

This implementation has several advantages over the password-based encryption
implementation in the jbasis library, which is insecure with the default algorithm choices.
Nevertheless, password-based security is rightly known as a minefield, and the
implementation appears to contain significant security flaws. Consider the following source
code from lines 111 onwards, containing the meat of the cryptographic logic.

String salt =
"Static salt for use in key genereation while exporting security token";

PBEKeySpec keySpec =

new PBEKeySpec(password.toCharArray(), salt.getBytes(), 2,
256);

SecretKeyFactory keyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");

SecretKey key = keyFactory.generateSecret(keySpec);
cipher =

Cipher.getInstance("AES/CFB/PKCS7PADDING",
new BouncyCastleProvider());

byte[] iv =

new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
0x0f };

AlgorithmParameterSpec paramSpec = new IvParameterSpec(iv);
cipher.init(mode, key, paramSpec);
byte[] outData = cipher.doFinal(inData);

There are three clear security weaknesses in this code:

Vulnerabilities.

1. A fixed IV (initialization vector) combined with AES in CFB (Cipher FeedBack) mode
means that the keystream used to encrypt the first block will be identical every time
the method is used (with the same password). For input data that shares a prefix, the
keystreams and ciphertexts will be identical until they block where they diverge.
• Given two ciphertexts (protected with the same password), an attacker can obtain

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 47

the exclusive-or of the beginning of the plaintexts.
• Given a plaintext-ciphertext pair (protected with an unknown password), an

attacker can decrypt the beginning of other ciphertexts.
2. A fixed IV also means that the same data will encrypt to the same value (under a fixed

password) every time.
3. The iteration count for the password hash is set to 2. This is such low value that a

brute force decryption attack on the passwords is likely to be feasible, unless
passwords are very long.

Two other observations do not have a direct security impact, but may also be worth noting:

4. The use of CFB-mode and PKCS #7 padding with AES is somewhat unusual, though
secure as such. It contrasts with the rest of e-voting, which uses CBC-mode and PKCS
#5. This seems somewhat arbitrary, but may (as mentioned) be due to an external
specification.

5. It is not clear whether the specified password hash will process all 16 bits in the
character array holding the password, or only digest the lower 8 bits of each character
value. This is not really a problem, as long as the passwords are sufficiently long.

The cipherSymmetrically method is used a number of places in the vsframework project,
notably the com.scytl.evote.vsframework.client.commands packages. For instance, in
the method SymmKeyGenerationCommand#execute it is used to store the generated
symmetric keys to disk using the master password.

Regarding the password hash iteration count, a similar vulnerability was found in the
Blackberry backup system in 201017; in that case the value 1 was used as an iteration count.
The recommended value when PBKDF2 was proposed in 2000 was 1000 iterations, and the
current recommendations are significantly higher due to advancements in hardware speeds.

Mitigation.

1. To fix the IV issues, one needs to handle encryption and decryption modes slightly
differently. In encryption mode, a unique random 16 byte IV should be generated and
prepended to the output byte stream. In decryption mode, the first 16 bytes of the
input byte stream should be used as the IV.

2. The PBKDF2 iteration count should ideally be “as high as possible” without
impacting the user experience. Actual values in real-world use tend to range from
10000 and upwards. Ideally, the number should be chosen based on an estimate on
how long it should take to crack the password-based encryption, giving current brute-
force capabilities and the password policy in use.

Another sound option would be to stick to PKCS #12 as a container format; as this can be
used to persist arbitrary data and not just keystores. Writing a simple interface on top of the
BouncyCastle PKCS #12 implementation might be a simpler option than creating it from the

17 See CVE-2010-3741, https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-3741, and
http://www.infoworld.com/print/139436

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 48

more general JCE primitives.

4.3.3 com.scytl.evote.counting.ecounting.crypto
The counting package provides yet another small crypto module, consisting of the three
classes.

4.3.3.1 TemporalDigestedFile,	 TemporalDigestedFileInputStream	 and	
TemporalDigestedFileOutputStream	

A TemporalDigestedFile is an absolute path (representing a File), together with a digest
containing the hash of that file. The other two classes extend FileInputStream and
FileOutputStream to keep track of the message digests as files are read and written.

There is one rather obvious problem with this implementation.

Both Stream classes:
_messageDigest = MessageDigest.getInstance("MD5");

Since MD5 is not a collision-resistant hash algorithm, this method may not provide strong
guarantees that a TemporalDigestedFile has not been actively modified between writing
and reading.

Let us consider how this is used. It turns out that the
com.scytl.evote.counting.ecounting.builder.EMLbuilder class uses
TemporalDigestedFileOutputStream to write election results data to storage. Meanwhile,
the com.scytl.evote.counting.ecounting.zip.CreateZipFile class reads the XML
files back in with a TemporalDigestedFileOutputStream, to create a zip file and export the
results.

CreateZipFile#createResultsZipFile() excerpt:
// Read the temporal file
tdfis =

new TemporalDigestedFileInputStream(temporalFile);
byte[] fileContent = IOUtils.toByteArray(tdfis);
tdfis.close();

if (!tdfis.checkDigest()) {

throw new UnexpectedException(
THE_TEMPORAL_FILE_HAS_BEEN_TAMPERED

+ temporalFile);
}

If an attacker has some degrees of freedom relating to how the EMLbuilder class writes its
output XML files, this is likely to be insecure due to known collision attacks on MD5.
Regardless of the attacker capabilities, using MD5 for any kind of secure purpose (with the
possible exception of HMAC-MD5) is strongly discouraged and may be in violation of project
requirements.

Vulnerability.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 49

• Use of deprecated hash function MD5 to ensure file integrity.

Mitigation.

• Replace MD5 with SHA-256, or with a secure MAC.

4.4 Analysis of audit and logging framework
The audit and logging framework consists of the secure-logger (com.scytl.logger) and
auditing (com.scytl.evote.auditing.*) packages. These are reasonable small and self-
contained packages, and it stands to reason that the logs produced should be verifiably
authentic.

4.4.1 com.scytl.slogger
The secure-logger package extends the log4j library to provide secure logging functionality.
What we are particularly interested in here are the core classes, as well as event processors
(located in the com.scytl.logger.processor sub-packages), which are used to add
cryptographic functionality.

4.4.1.1 SecureFileAppender	
The SecureFileAppender class is the base abstract secure logger class, extending the
FileAppender class from log4j. It does not actually implement any security features on its
own.

4.4.1.2 SecureLoggingEvent	
The SecureLoggingEvent, extending the log4j LoggingEvent, is the basic decorator class
for events that are to be logged.

4.4.1.3 LoggingEventProcessor	
This is the general interface that all event processors must implement.

4.4.1.4 SignatureEventProcessor	
A SignatureEventProcessor is used to put a digital signature on a SecureLogEvent. A
private key for the signature scheme must be specified in the constructor. The public
processEvent method uses a protected method, signData, to create a signature using the
com.scytl.crypto library. According to the default settings, this will sign with
SHA256withRSA, which is a secure signature scheme.

A possible issue with the SignatureEventProcessor is that it creates the byte array to sign
using String.getBytes. This encodes the string using the default character set, rather than
a specific character set such as UTF-8. Hypothetically, this could cause ambiguities if
someone is able to modify the default character set, or create a log event containing
characters that cannot be represented in the default character set.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 50

4.4.1.5 HMacEventProcessor	
A HMacEventProcessor is used to produce a message authentication code on a
SecureLogEvent. The message authentication code is computed over the current event, as
well as the previous MAC value, which means that the sequence of log entries is preserved.
In pseudocode:

calculateHMac: LoggingEvent loggingEvent, SecurePatternLayout layout:
1. Use the layout to create a formatted String from the loggingEvent
2. Compute the HMAC over the concatenation of the _lastHmac value and

the formatted event
3. Update _lastHmac with the computed HMAC value
4. Base64-encode the HMAC and return it

This chaining feature means that intermediate log entries can not be deleted, as that would
invalidate HMACs on all subsequent entries. However, a log could still be truncated.

The MAC used is HMACSHA256 as specified in CryptographicConstants (4.3.1.1), which is
certainly secure. However, the key generated for use with the MAC appears to only be 192
bits in length, since the generateSymmetricKey method from the
CryptographicAlgorithms class (4.3.1.2) is used.

Once again there also seems to be a potential issue with the String.getBytes conversion,
which does not specify the character set for the conversion.

4.4.1.6 EncryptedHMacEventProcessor	
Building on the previous class, the EncryptedHMacEventProcessor implements additional
secretKeyLog functionality, to persist and rotate the HMAC secret keys.

secretKeyLog: SecurePatternLayout layout:
1. Get the existing _lastHMAC and _secretKey, if they exist
2. Reinitialize the superclass, thus obtaining a new secret key and a

reinitialized HMAC
3. Asymmetrically encrypt the new key with RSA
4. Generate a SecureLoggingEvent containing the _lastHMAC, the old

secret key, and the encrypted version of the new key

By itself, it seems that this would not be secure; an attacker could truncate the key log (and
the event log) to hide the key change, and emit new log events using the old MAC key (from
the key log). Thus, the class should not be used directly.

4.4.1.7 SignedEncryptedHMacEventProcessor	
This is the ultimate event processor class, adding all functionalities. It extends the secret key
logger in the EncryptedHMacEventProcessor class with an additional
SignatureEventProcessor, which is used to sign the secretKeyLog. The full contents of a
secretKeyLog event is thus:

• the standard log formatting, including timestamp and log level;
• the current _lastHMAC state (before the event was emitted);
• the old HMAC key (if it exists) unencrypted;

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 51

• the new HMAC key, encrypted;
• the chained HMAC of the previous four elements (taken with the new key);
• the signature of the previous five elements; and
• a properties object, with the ENCRYPTED_SESSION_KEY, LIBERATED_SESSION_KEY (if

it exists) and SIGNATURE flags set.

In the terminology of the implementation, a log “block” consists of the ordered set of log
entries made under a single HMAC key. It is clear that the chained HMAC construction
makes it infeasible to remove individual events from a block. However, there is nothing here
that would prevent an attacker with system access to truncate the log.

Potential vulnerability.

If an attacker were to truncate an event log past a block boundary (i.e. key change), she is
also able to add new (fake) log events to that block, using the HMAC key that was published
at the block change.

This vulnerability should probably be mitigated by operational, rather than cryptographic,
means. Our understanding is that the monitoring tool Splunk is used to monitor log events
in real time, and that there are configured limits as to how large an event log block will grow
before the key is rotated.

The security goal for a secure audit log should, as a minimum, be that any attempt at
tampering with the log will be detected (with high probability). Using a real-time log
collection tool which resides in a different security zone may satisfy this requirement, if it
means that an attacker with local access can not get an opportunity to truncate and modify
the log before it is synchronized remotely.

Another potential attack scenario might occur if the attacker can prevent communications
between the logging server and the real-time monitoring system for some period of time, and
use that window to stop the log generation on the logging server and manipulate the log
events before the connection is regained. Because of this, the monitoring should preferably
be synchronized in some way.

If there are stronger security requirements related to audit logging, one must consider
carefully how this can be achieved within (or without) the secure-logger framework.

4.4.1.8 SignatureEventValidator	
A SignatureEventValidator is the natural counterpart of the SignatureEventProcessor,
containing the validation logic for a signed SecureLoggingEvent. The validateEvent
method will take an event and a layout as input, and check the signature on the event if it
contains a signature.

An interesting “feature” of the SignatureEventValidator is that it succeeds if the event in
question does not have the SIGNATURE property set.

validateEvent: SecureLoggingEvent event, SecurePatternLayout layout:
try {

if (event.getEventProperties().containsKey(

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 52

SecureMessageProperties.SIGNATURE)) {
… validate the signature …

}
}

It appears that signed events remain malleable; an attacker could simply remove the
SIGNATURE property to prevent validation at this point. However, since the
SignatureEventValidator is not used by itself, we have to look at the HMAC event
validators as well.

4.4.1.9 HMacEventValidator,	 EncryptedHMacEventValidator,	
SignedEncryptedHMacEventValidator	

These classes validate the corresponding processors previously analysed. We will have a
closer look at the validation logic for SignedEncryptedHMacEventValidator:

validateEvent: SecureLoggingEvent event, SecurePatternLayout layout:
super.validateEvent(event, layout);
Map<String, String> eventProperties = event.getEventProperties();
if (eventProperties

.containsKey(SecureMessageProperties.ENCRYPTED_SESSION_KEY)) {
if (!eventProperties

.containsKey(SecureMessageProperties.SIGNATURE)) {
throw new EventValidatorException(

"Signature expected: " + layout.format(event));
}

}
_signatureEventValidator.validateEvent(event, layout);

The call to super.validateEvent validates the HMAC data. The validation logic then checks if
this is a secretKeyLog event, in which case the SIGNATURE flag is also required to be
present, forcing the signature validation to take place.

Potential vulnerability.

However, what happens if someone has removed the ENCRYPTED_SESSION_KEY and
SIGNATURE flags from the log event properties? It appears that the event will validate
flawlessly, even though the actual data might be modified. This would not be completely
transparent, because it will also prevent the HMAC validator from rekeying with the new
key. But it illustrates once more the malleability of the secure logging framework, and the
degrees of freedom available to an attacker.

There may be other consistency checks present in the logging and validation framework,
though not of a cryptographic nature. Once again, a key countermeasure to ensure the
impossibility of log tampering appears to be the presence of the real-time monitoring
systems. A different and complementary option, though more intrusive and likely to be less
convenient, would be to use some kind of write-once (WORM) storage medium to persist the
logs locally on the server that emits them.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 53

4.4.1.10 PublicEncryptedHMacEventValidator	 and	
PublicSignedEncryptedHMacEventValidator	

The Public… classes are used to validate old log blocks, e.g. blocks where the HMAC key has
been published due to key rotation. They accumulate a block of events until the HMAC key is
“liberated”, and then verify them as a batch.

4.4.2 com.scytl.evote.auditing

The auditing package is a small and Norway-specific audit framework built on top of the
secure logger package. It does not contain a lot of cryptographic functionality, but we will
have a quick look at it regardless.

4.4.2.1 AuditSecureFileAppender	
The AuditSecureFileAppender class contains its own private extension of
SignatureEventProcessor, which uses java.security.Signature directly, instead of
rather than going through the implementation in com.scytl.crypto or using e.g.
com.scytl.evote.protocol.signers.AsymmetricSigner (4.2.9.1).

Presumably there is a reason for this, though it is somewhat unclear what that reason is. The
only obvious difference from the boxed com.scytl.crypto implementation would be that it
is possible to supply an alternate crypto provider, but this is also offered by
AsymmetricSigner. In any case, the signature implementation appears to be secure as long
as a secure private key is used.

Similarly, the class also implements its own routine to decrypt an array of bytes with
RSA/ECB/PKCS1Padding, supporting multiple providers. In this case, the functionality is
already present in com.scytl.evote.protocol.ciphers.AsymmetricCipher (4.2.1.1).

The decryption routine makes the same strange mistake as the AsymmetricCipher
implementation regarding the cipher block size:

Decrypt: byte[] what, Key key:
if (_provider == null) {

cipher = Cipher.getInstance(RSA_ECB_PKCS1_PADDING);
} else {

cipher = Cipher.getInstance(RSA_ECB_PKCS1_PADDING, _provider);
}
byte[] toReturn;
if (cipher.getBlockSize() > 0) {

byte[][] unpacked =
unpackSymmetricMsg(what, cipher.getBlockSize());

cipher.init(Cipher.DECRYPT_MODE, key, new IvParameterSpec(
unpacked[0]));

toReturn = cipher.doFinal(unpacked[1]);
} else {

cipher.init(Cipher.DECRYPT_MODE, key);
toReturn = cipher.doFinal(what);

}

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 54

According to the Javadoc for javax.crypto.Cipher, getBlockSize returns “the block size
(in bytes), or 0 if the underlying algorithm is not a block cipher”. Thus this is never actually
supposed to happen.

In general, multi-block encryption with RSA is not advisable, also due to performance
reasons. The provider will probably allow one to encrypt (and decrypt) multi-block data, but
there is not a chaining mode defined, which means that an attacker would be free to reorder
or manipulate the blocks.

Finally, note that the class once again explicitly uses a 192-bit triple-DES key for use with a
256 bit HMAC. This is not in itself insecure, since a k-bit HMAC provides roughly k bits of
security, but it seems somewhat strange.

4.4.2.2 RemoteAttestation	 and	 RemoteConnector	
The RemoteConnector class (part of tpm-central-tool, in
com.scytl.evote.auditing.tpm.bizz) opens an unencrypted remote Socket in the aptly
named unsafeConnect method. However, our understanding is that this tool is a proof of
concept implementation that is not actually used in the production system.

4.4.2.3 Other	 classes	
Some of the other classes in the audit package are used to handle keys (for encrypting,
signing and/or computing HMACs), but there does not seem to be any significant
cryptographic functionality as such.

4.5 Key generation
As the final part of our review, we will look at how keys are generated, using the vsframework
command line client utilities. This code is invoked via the Election_superscript.sh shell
script.

4.5.1 com.scytl.evote.vsframework.client.utils

The utils package contains several utility classes, in particular one that is used extensively
during key generation.

4.5.1.1 Utils	
The Utils class contains a number of useful methods and constants. It defines the following
security parameters:

• P12_PASS_SIZE = 20;

• PUK_MIN_LENGTH = 4;

• PIN_MIN_LENGTH = 4;

• PUK_MAX_LENGTH = 8;

• PIN_MAX_LENGTH = 8;

• RSA_KEY_SIZE = 2048;

• SHARE_PIN = "11111111";

• P12_MIN_LENGTH = 8;

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 55

• P12_MAX_LENGTH = 20;

Among several methods defined, the following are explicitly relevant for key generation and
security.

• createRandomBase32 creates a random Base32 string of the specified length,
typically used as a human-readable password. It does this using a CryptoFactory
instance passed as a parameter.

• writePasswordFile writes a String representing a password, to a file. This file must
be well-protected, since it contains the actual secrets.

• The readPrivateKeyFile, writePrivateKeyFile, and mergePrivateKeyFile
methods appear to be using the hard-coded SHARE_PIN value when dealing with
temporal key shares. This is obviously not secure, but it is unclear how much it is
used.

4.5.2 com.scytl.evote.vsframework.client.commands.kms

The package contains 44 different command classes that can be invoked via the command
line, including key generation. Our focus are the commands that actually generate keys, with
reference to the election superscript and Scytl’s election configuration guide document. The
main functionalities are usually implemented in the execute method of the command class.

Commands are listed in the order they are first invoked by the election configuration script.

4.5.2.1 InteractiveKms	
The InteractiveKms is a very large “master” implementation, containing all the commands
needed to perform the key setup phase of the voting system. Much of this is not directly
cryptographic in nature. However, there are a few points are worth noting.

The signature algorithm property is set to SHA512withRSA, contrasting with the usage of
SHA256withRSA elsewhere. This is not insecure, but it is inconsistent.

In the createPasswordsFiles method, the method cipher (final byte[] data) from
com.scytl.evote.vsframework.client.Interactive is used repeatedly to process data
which is subsequently written to file. This is in fact just a thin wrapper for the method
UtilsRBAC#cipherSymmetrically (4.3.2.1), which as we have seen contains a number of
security weaknesses.

4.5.2.2 CAGenerationCommand	
The first step of election setup is to generate the election event certificate authority’s root
certificate. In the execute method, the keymanager package (4.2.7) from the protocol
project is used to generate a certificate, which is tested for consistency. It is then serialized as
a PKCS #12 file, protected with a random password generated by the Utils class. The
password consists of 20 (P12_PASS_SIZE) base32-encoded characters, a total of 100 bits of
entropy. This should be OK given the slow PKCS #12 password hash.

Finally, the encrypted PCKS #12 key file is written to disk, and the random password is
written to disk as a plain text file, again using the Utils class.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 56

With default settings in the keymanager package, the certificate generated should be using
2048 bit RSA. Since the master keystore password is written to a cleartext file, care must be
taken that it is not accidentally exposed, and that it is securely deleted after use. Measures
such as using a dedicated (air-gapped) machine and hard disk encryption will be useful to
achieve this.

4.5.2.3 RSAGenerationCommand	
After the CA has been generated, public and private RSA keys are generated for each of the
system components. The execute method loads the CA (reading the password from the
console if running interactively), and repeatedly calls generateKey for each component. The
latter method uses a keymanager to generate a public key. This time the key size is specified
explicitly as 2048 bits, using the defined constant from the Utils class, rather than using the
default parameter in the keymanager package.

After this, the key is certified using the CA, After this, the code proceeds as in the previous
class: the key is tested for consistency, serialized as PKCS #12 and encrypted with a random
20-character base32. The key and password is finally written to disk.

Once again, the approach seems reasonably provided that the password file is kept secure.

4.5.2.4 GenerateCSRCommand	
The GenerateAppCSR command is used to generate certificate signing requests for the keys
that are generated in hardware security modules, rather than by the central KMS. This code
should be executed on the various systems connected to a HSM (e.g. the RCG and the VCS).

The execute method is fairly long and linear. It initializes a BouncyCastle provider, loads a
local keystore from a specified path and with a specified passphrase, or generates a new one
if needed. This time, the key algorithm and provider is loaded as properties, and the key size
is taken as the default from keymanager. This is again slightly different from the two
previous classes, though the end result should be the same.

With a keypair at hand, the certificate signing request is invoked via the keymanager, in
what appears to be a straightforward manner, the request is sanity checked and persisted to
a file.

4.5.2.5 GenerateAppCertificateCommand	 and	 GenerateCertificateCommand	
These classes are used to use the central CA to sign certificates based on the certificate
signing requests from the previous point. The GenerateCertificateCommand class uses a
BCCryptoFactory and accesses the BouncyCastle CA provider to certify (via keymanager
and jbasis). This appears to be straightforward.

4.5.2.6 AddSymmetricKeyToPKCS12Command	
The command is used to add symmetric AES keys to the mix node PKCS #12 files. Key length
is taken from the usage focus. The key itself is generated at random via the KeyManager. The
password is either loaded from the command line, from the password file, or generated

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 57

anew. After the key is written to the PKCS #12, it is read back for verification. Once again
this seems to be reasonable.

4.5.2.7 SymmKeyGenerationCommand	
The SymmKeyGenerationCommand is used in step 8 of the generation, to generate a
symmetric key which is used by the VCS to generate private voter parameters, and also to
provide a symmetric key for the RCG.

The symmetric key is generated via the KeyManager and the indicated key length from the
focus. At this point, the key is stored using Utils.encryptFile, which uses an underlying
JCEEnvelope to encrypt the file with a certificate, whose path is specified by the mandatory
attribute _certFilePath.

However, if the optional flag _storeCipheredSymmetricKey is specified, the key is also
persisted to a password-protected file using the infamous
UtilsRbac#cipherSymmetrically method (4.3.2.1). We observe that this flag is set in the
Election_superscript.sh present in the code base. As previously discussed, the
symmetric password-based encryption contains multiple security flaws, particularly if
several files are encrypted using the same master passwords.

It appears that the keys are encrypted in this way because they are used by other parts of the
configuration script.

4.5.2.8 VoterCredGenerationCommand	
The VoterCredGenerationCommand is used to generate keys for the individual voters in the
electoral roll. It unlocks the CA certificate with the master password, generates a number of
threads, and uses the CredentialsGeneratorJCE class (4.2.6.5) to do the actual work.

Each credential generated contains a PKCS #12 keystore which is protected with a password.
The password used is in fact the voter ID. This is somewhat curious, because it means that
anyone could unlock the certificate knowing only the voter ID.

It appears that the security of this construction has been analysed and that the behaviour is
correct (and secure in a protocol context), but when reviewing the code it looks rather
strange, particularly because the source code does not comment on it.

4.5.2.9 SharesGenerationCommand	
The class is used to generate El Gamal keys for the VCS and RCG, and this is done using the
key generation interface exposed by the KeyManager class. Private keys are then split into
shares, using the CreatePrivateKeyShareWriter and ElGamalPrivateKeyShareWriter
classes from the same package, which again interface with the Shamir Secret Sharing
implementation in jbasis.

Share files are signed and encrypted with a supplied RSA certificate. The storage medium
can either be a smart card or a file, presumably the smart card option is what is being used
for live keys.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 58

4.5.2.10 EBPublicKeyCommand	
The EBPublicKeyCommand generates the “public” El Gamal keys of the election for the
Electoral Board, which satisfy the identity

pubKeyEB = pubKeyVCS * pubKeyRCG

Since the keys are public, this is completely straight-forward: load the public key arrays from
the VCS and RCG, load the El Gamal group parameters for the election, and do pointwise
multiplication of each public key pair.

4.5.2.11 ABWriteSharesCommand	
The class is used to generate RSA keys for the Administration Board, split them into shares,
and write the shares to smart cards. As such, it appears like a blend of several of the previous
commands, doing the following steps:

1. Load the election certificate authority from a file, and enter the password to unlock
2. Generate a RSA key pair using the KeyManager interface. The key length is set to

Utils.RSA_KEY_SIZE, i.e. 2048 bits.
3. Create a private key share writer, to split the keys into shares and persist them on

smart cards. As in 4.5.2.9, there is also an option to write to file; this should only be
used for testing.

4. Create a public certificate with the appropriate extensions, and use the CA to sign it.
5. Write the public certificate to a file.

This appears to be secure.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 59

5 Conclusions and final recommendations

This review has touched on more than 80 classes implementing and handling cryptographic
primitives, key generation, and other security functionality in the Internet voting
implementation. In addition, a large number of auxiliary classes have been examined, albeit
in less depth.

Our general recommendation is that key stakeholders review the technical chapters 3 and 4
of the report, and take appropriate actions to evaluate the findings presented, and assess and
manage the associated risk(s). A short list summarising specific observations is also attached
as Appendix A.

The reviewer’s lack of prior experience with the electronic voting project has in some sense
been a strength, by making it possible to analyze the implementation with fresh eyes; yet it is
also a weakness, not least in the sense that it is hard to correctly judge the full context and
thus the potential impact of each potential weakness found.

That said, based on the review that has been conducted, and our current understanding of
the system, mnemonic would like to offer four main recommendations:

1. Address the security issue(s) caused by cryptographic weaknesses in the password-
based encryption function cipherSymmetrically in the UtilsRBAC class (4.3.2.1).

2. Ensure that sufficient safeguards are in place to maintain the integrity of the audit
events, despite potential vectors for dishonest parties to truncate or manipulate data
from the secure-logger appenders. (4.4.1).

3. Verify that observations made relating to key generation (4.5) do not threaten the
overall security of the protocol, by inadvertently revealing keys or other security-
critical information.

4. Take concrete actions to improve the overall state of the source code, e.g. by
consolidating and refactoring duplicate code, cleaning up interfaces and
dependencies, documenting technical architecture and usage, and continually
improving quality assurance practices in the development process.

It is our sincere hope that these points, and the review as a whole, shall be of use to the team
attempting to test, improve, and extend the current Internet voting platform, and that it
may also prove useful to other parties who, acting as academics or private citizens, want to
inspect, study, validate, and improve the system.

To conclude on a positive note, mnemonic has not identified any critical cryptographic
weaknesses that would make the system obviously unsuitable for use. Thus it remains only
to wish the Ministry of Local Government and Regional Development, Scytl, and the e-
voting project team the very best of luck with the upcoming trial in the 2013 elections.

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 60

A Appendix: List of findings

The below table summarizes the main (potential) security findings and observations on the
Internet voting source code noted in the report.

Class Chapter Type of finding Initial assessment

Third-party libraries 2.3 Old versions of third
party security libraries

Consider impact of
known vulnerability in
Spring Security core

General 3.5 Use of SecureRandom
with default RNG and
provider

Consider making
initialisation explicit

CryptoFactory 4.1.1.1 Defaults for symmetric
encryption include 3-
DES, ECB mode and
weak password-based
encryption

Avoid relying on jbasis
default algorithms for
symmetric encryption

BCPKCS7Envelope 4.1.2.4 Tries to generate 128-bit
key for use with 3-DES

Key must be 192 bits

BigNumber 4.1.3.1 SecureRandom instance
passed as argument to
prime generation
methods

Relies on caller
initializing a secure
random instance
properly

 4.1.3.1 Optimized modular
exponentiation using
CRT may have timing
side channel

Should only be used in
situations where an
attacker cannot obtain
timing information

ShamirShadowManager 4.1.4.2 Shamir polynomial
coefficients are selected
from wrong statistical
distribution

The bug invalidates the
security proof for the
secret sharing
algorithm.

FileConnection 4.1.4.3 Method for persisting
shares to files use weak
password-based
encryption

For security, shares
should be persisted to
smart cards using
TokenConnection

TokenConnection 4.1.4.1 Method for persisting
shares to smart cards use
3-DES

May be inconsistent
with security
requirements

AsymmetricCipher 4.2.1.1 Logic for handling For data not fitting in a

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 61

multiple-block data
appears confused

single block, it would be
more suitable to use a
hybrid scheme (e.g.
JCEEnvelope)

JCEEnvelope 4.2.1.3 The IV is encrypted, this
is not necessary

No security significance,
but somewhat unusual

 4.2.1.3 A message
authentication code
should be used on the
enveloped data

Lack of MAC means that
enveloped data will not
satisfy strongest security
notion (IND-CCA2)

 4.2.1.3 Note that the jbasis
classes are used here, i.e.
not the
AsymmetricCipher from
the local package

Ensure a single
implementation is used
consistently throughout

SymmetricCipher 4.2.1.5 Logic for handling
multiple-block data
appears confused

If instantiated with a
non-block cipher (e.g.
RC4), IV does not
appear to be handled
correctly

BlockElGamalEngine 4.2.3.1 No chaining of El Gamal
blocks means that blocks
may be shuffled or
otherwise manipulated

Engine should not be
used for arbitrary data,
or data integrity must be
protected elsewhere (i.e.
by a signature or a
MAC)

RCGCrypto 4.2.6.2 Insecure random
instance used to select
verification of zero-
knowledge proofs

Evaluate impact of
insecure random
generation for security
proof of protocol

VCSCrypto 4.2.6.3 The “…WithoutSigning”
method variant may not
be secure

Ensure that signing is
used for production
code

HardcodedElection-
ManagementService

4.2.6.4 The hardcoded EMS
contains a lot of fixed
parameters, including
credentials

Ensure that all “test”
methods are properly
overridden by the
production EMS

CredentialsGeneratorJCE 4.2.6.5 Note that the common This may be working as

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 62

names of the voter
certificates are not
anonymous; anyone can
compute the hash

designed; consult
protocol specification

 4.2.6.5 Note overlap between
CredentialsGenerator,
CredentialsgeneratorJCE

Unclear why two classes
is needed

HashedReturnCode 4.2.8.2 Truncated hash has only
160 bits of output

May be vulnerable to
collision attack if
adversary has partial
control of return code
inputs

com.scytl.evote.protocol.signers
package

4.2.9 Note extensive code
duplication between
different Schnorr
signature variants

All variants appear
secure, but not
obviously so; consider
separating the Schnorr
primitive from the
protocol logic

 Signers pick the
randomness from a
different range than the
encryption package

Either way is safe, as the
probability of a “bad”
choice is negligible

GeneratorSelector 4.2.10.2 The _paramSize
attribute is only used for
naming, so actual
parameter sizes may not
be consistent

Consider verifying that
the length of the data
corresponds with the
parameter

CryptographicConstants 4.3.1.1 Specifies 3-DES as
default symmetric cipher

May not be consistent
with project
requirements

CryptographicAlgorithms 4.3.1.2 generateSymmetricKey
method builds a 192-bit
3-DES key

Keys generated are not
suitable for use with the
HMAC algorithm in the
same package

UtilsRBAC 4.3.2.1 cipherSymmetrically
method contains
cryptographic flaws
related to IV and
password hashing

Method should be
rewritten or replaced, as
it has significant
security weaknesses

Source code review of Norway’s electronic voting system mnemonic as

..

 Page 63

TemporalDigestedFile 4.3.3.1 Use of MD5 for file
integrity

May not be secure if an
adversary can control
inputs; replace MD5
with SHA256 or a MAC

com.scytl.slogger package 4.4.1 Conversions between
String and byte[] are not
locale aware

Inconsistent behaviour
if locale can be modified

SignedEncryptedHMac-

EventProcessor

4.4.1.7 Chained HMAC event
log can be truncated
back past a block
boundary, at which point
new events can be faked

Use a write-only
medium and/or live
monitoring as an
additional safeguard
against tampering

SignatureEventValidator /
HMAC validators

4.4.1.8 /
4.4.1.9

Signature validator will
accept events that do not
contain a signature

Tricky interaction
between the validators,
seems fragile

AuditSecureFileAppender 4.4.2.1 Implements its own
signer and decryption
routines

Duplicates other project
crypto classes, no clear
rationale for duplication

RemoteConnector 4.4.2.2 Opens an insecure
remote socket

Does not appear to be in
use

Utils 4.4.5.1 Includes a fixed
SHARE_PIN, “11111111”

Check whether this
value is used by
production code

InteractiveKms 4.5.2.1 Calls to cipher method
use insecure encryption
routine from UtilsRBAC

Fix and/or replace the
code in UtilsRBAC

CAGenerationCommand,
RSAGenerationCommand

4.5.2.2,
4.5.2.3

Note that password to
CA keystore is written to
disk as a plain text file

Ensure that file can not
be accessed by
unauthorized actors,
and is securely erased
from disk

SymmKeyGenerationCommand 4.5.2.7 Writes symmetric keys
to disk using insecure
routine from UtilsRBAC

Fix and/or replace the
code in UtilsRBAC

