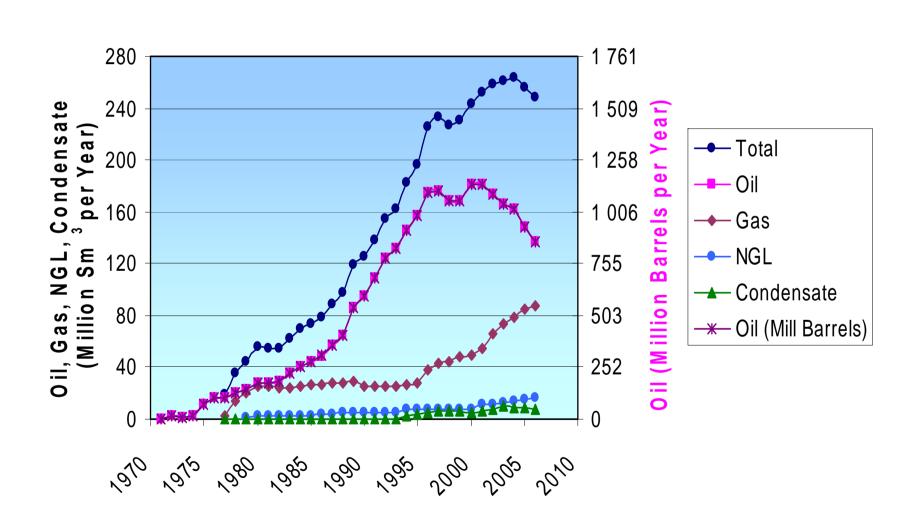

THORIUM AS AN ENERGY SOURCE - Opportunities for Norway 900 Permian, Oslo igneous province Devonian sedimentary basins Caledonian Nappe Complexes Precambrian gneiss complexes/ Location of Th enrichments January, 2008

Thorium Report Committee

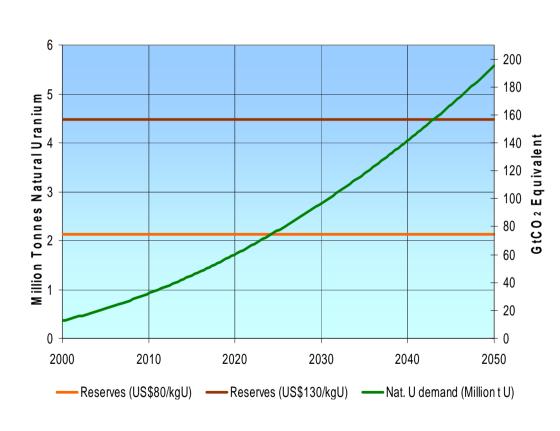
Main Results

Professor Mikko Kara, Chairman of the Committee

CHALLENGE FOR THE MANKIND!


ENERGY IS TOP ON AGENDAS

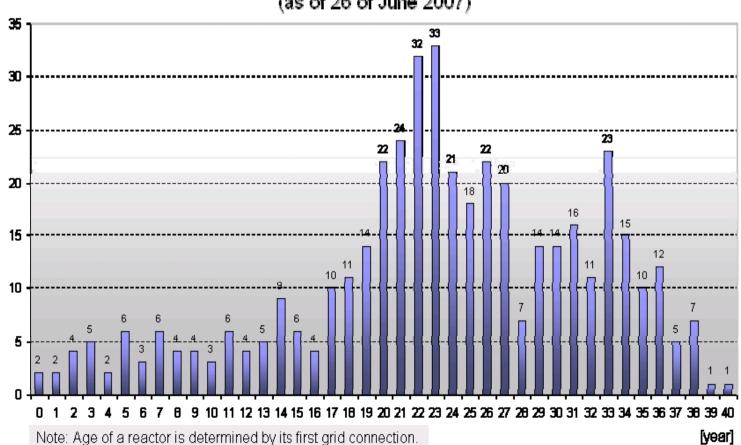
EU IS FRONT-RUNNER:


The EU Climate and Energy Package - Targets by 2020:

- Reduction of greenhouse gas emissions by 20 % compared to 1990 level.
- Reduction of energy consumption by 20 % compared to 1990 level.
- Increase the share of renewable sources in the EU energy mix to 20 %.
- Increase the share of biofuels of transport petrol and diesel to 10 %.

NORWEGIAN PETROLEUM PRODUCTION APPROACHING ITS PEAK

CUMULATIVE NATURAL URANIUM DEMAND AND RESERVES


Nuclear Energy Agency's Reference Scenario

- Continued nuclear growth
- Reported uranium reserves used right after 2040
- Reported reserves depend on demand – might increase
- Breeder reactor technology will change this development

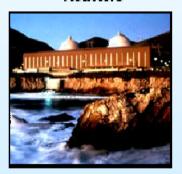
NUCLEAR FLEET IS RETIRING

Number of Operating Reactors by Age

(as of 26 of June 2007)

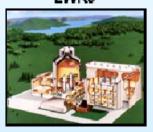
DEVELOPMENT IS TIME-CONSUMING

Generation I


Early Prototype Reactors

- Shippingport
- Dresden, Fermi I
- Magnox

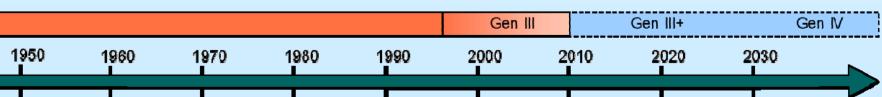
Generation II


Commercial Power Reactors

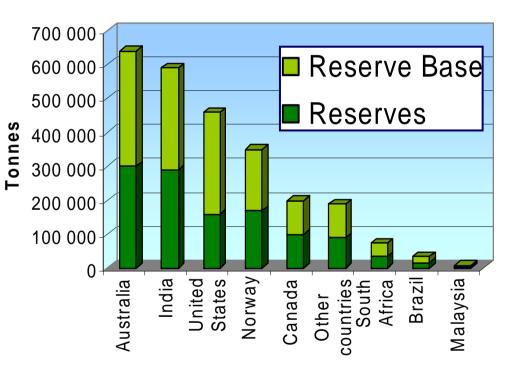
- LWR-PWR. BWR
- CANDU
- AGR

Generation III

Advanced LWRs


- ABWR
- System 80+
- -AP600
- EPR

Generation III +


Evolutionary
Designs Offering
Improved
Economics for
Near-Term
Deployment

Generation IV

- Highly Economical
- Enhanced
 Safety
- Minimal Waste
- Proliferation
 Resistant

THORIUM IN NORWAY

US Geological Survey claimes that:

 Norway has one of the major thorium reserves in the world.

The Geological Survey of Norway:

- Thorium has never been specifically explored for
- Fen Complex most promising
- Low concentration 0.1 0.4 wt%
- Grain size too small for the traditional flotation processes
- Norway has a potential resource
- More investigations necessary to define as a reserve

THORIUM AS A NUCLEAR FUEL

- Preparation of thorium fuel is more complex and expensive than for uranium fuel
- Thorium as a nuclear fuel is technically well established and behaves remarkably well in LWR and HTR
- Reprocessing thorium fuels will require a very substantial amount of development work
- Waste management will in principal follow known procedures and methods
- Radiation protection requirements for the thorium cycle will be lower than those of the uranium cycle
- Technically, one of the best ways to dispose of a plutonium stock pile is to burn it in a thorium-plutonium MOX fuel

INDUSTRIAL EXPERIENCE OF THORIUM Critical (Normal) Reactors - Selfsustaining

Country	Name	Туре	Power	Operation
Germany	AVR	HTGR	15 MW _e	1967 - 1988
Germany	THTR	HTGR	300 MW _e	1985 - 1989
UK, OECD-EURATOM also Norway, Sweden & Switzerland	Dragon	HTGR	20 MW _{th}	1966 -1973
USA	Fort St Vrain	HTGR	330 MW _e	1976 – 1989
USA, ORNL	MSRE	MSBR	7.5 MW _{th}	1964 – 1969
USA	Shippingport & Indian Point	LWBR PWR	100 MW _e 285 MW _e	1977 – 1982 1962 – 1980
India	KAMINI, CIRUS & DHRUVA	MTR	30 kW _{th} 40 MW _{th} 100 MW _{th}	In operation

MOST PROJECTS USING THORIUM WERE TERMINATED BY THE 1980s

Main Reasons:

- The thorium fuel cycle could not compete economically with the well-known uranium cycle
- Lack of political support for the development of nuclear technology after the Chernobyl accident
- Increased worldwide concern regarding the proliferation risk associated with reprocessing of spent fuel

Except for India:

That utilize thorium for its long term energy security

THORIUM IN NUCLEAR REACTORS Accelerator Driven System (ADS)

Sub-critical Reactor – Needs external neutron source

- Proton accelerator
 Neutrons to the reactor core
- Reactor core containing thorium (and some U-235 or transuranic waste)
- No ADS pilot scale in operation yet
- Myrrah project started in 1997 (Belgium)
 - expected in operation by 2016 2018

RECOMMENDATIONS

- The potential contribution of nuclear energy to a sustainable energy future should be recognized
- It is essential to asses whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations
- The development of an ADS using thorium is not within the capability of Norway working alone. Joining the European effort in that field should be considered.
- Norway should strengthen its international collaboration by joining the EURATOM fission programme and GIF programme on Generation IV reactors suitable for the use of thorium

RECOMMENDATIONS (cont.)

 Any new nuclear activity in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium strong long-term commitment of the education and basic science side. All these should be included in the country level strategy aiming to develop new sustainable energy sources

SUMMARY

- The current knowledge of thorium based energy generation and the geology is not solid enough to provide a final assesment regarding the potential value for Norway of a thorium based system for a long term energy production.
- The Committee recommends that the thorium option be kept open in so far it represents an interesting complement to the uranium option to strengthen the sustainability of nuclear energy