Meld. St. 33 (2019–2020)

Langskip – fangst og lagring av CO2

Til innhaldsliste

Referanseliste

  • 1. Regjeringa, Norge forsterker klimamålet for 2030 til minst 50 prosent og opp mot 55 prosent. 2020: https://www.regjeringen.no/no/aktuelt/norge-forsterker-klimamalet-for-2030-til-minst-50-prosent-og-opp-mot-55-prosent/id2689679/.

  • 2. Oljedirektoratet, CO2 Storage Atlas – Norwegian Continental Shelf. 2014, Stavanger: Oljedirektoratet.

  • 3. IPCC, Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the International Panel on Climate Change, R.K. Pachauri og L.A. Meyer, Editors. 2014: Geneve, Sveits.

  • 4. IPCC, Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, V. Masson-Delmotte, et al., Editors. 2018.

  • 5. Peters, G. og I. Sognnæs, The Role of Carbon Capture and Storage in the Mitigation of Climate Change. 2019, Cicero: Oslo.

  • 6. IEA, Energy Technology Perspectives 2020 – Special Report on Clean Energy Innovation. 2020, IEA: Paris.

  • 7. IEA, World Energy Model. 2019, IEA: Paris.

  • 8. IEA, World Energy Outlook 2019. 2019: IEA.

  • 9. Størset, S.Ø., et al., Profiting from CCS innovations: A study to measure potential value creation from CCS research and development. International Journal of Greenhouse Gas Control, 2019. 83: p. 208–215.

  • 10. Leeson, D., et al., A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control, 2017. 61: p. 71–84.

  • 11. IEA, Exploring clean energy pathways. 2019, IEA: Paris.

  • 12. IEA, Global CO2 emissions by sector, 2018. 2020, IEA: Paris.

  • 13. Farrell, J., et al. The Role of Industrial Carbon Capture and Storage (CCS) in Emission Mitigation. in 14th Greenhouse Gas Control Technologies Conference. 2018. Melbourne.

  • 14. Norsk Industri, Veikart for prosessindustrien – økt verdiskaping med nullutslipp i 20150. 2016, Norsk Industri.

  • 15. United Nations Climate Change Secretariat, Climate action and support trends 2019: Based on national reports submitted to the UNFCCC secretariat under the current reporting framework. 2019: Bonn, Tyskland.

  • 16. Haszeldine, R.S., et al., Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018. 376(2119).

  • 17. Geden, O., G.P. Peters, og V. Scott, Targeting carbon dioxide removal in the European Union. Climate Policy, 2019. 19(4): p. 487–494.

  • 18. Solano Rodriguez, B., P. Drummond, og P. Ekins, Decarbonizing the EU energy system by 2050: an important role for BECCS. Climate Policy, 2017. 17(sup1): p. 93-S110.

  • 19. Karlsson, H., et al., Immediate deployment opportunities for negative emissions with BECCS: a Swedish case study. 2017.

  • 20. Miljødirektoratet. Klimagassutslipp fra avfall. 2020 [2020 16. september]; https://miljostatus.miljodirektoratet.no/tema/klima/norske-utslipp-av-klimagasser/klimagassutslipp-fra-avfall/.

  • 21. Miljødirektoratet, et al., Klimakur2030. 2020. p. 1197.

  • 22. Global CCS Institute, The Global Status of CCS. 2019: Australia.

  • 23. World Bank Group. Carbon Pricing Dashboard. 2020; https://carbonpricingdashboard.worldbank.org/.

  • 24. IEA, CCUS in Power. 2020, IEA: Paris.

  • 25. Brown, P.F., et al., The role of Carbon Capture and Storage in a Carbon Neutral Europe – Assessment of the Norwegian Full-Scale CCS project's benefits. 2020, Carbon Limits og Thema Consulting Group: Oslo.

  • 26. IOGP, IOGP assessment of draft National Energy and Climate Plans. 2019, International Association of Oil & Gas Producers.

  • 27. Popp, D., R.G. Newell, og A.B. Jaffe, Chapter 21 – Energy, the Environment, and Technological Change, in Handbook of the Economics of Innovation, B.H. Hall og N. Rosenberg, Editors. 2010, North-Holland. p. 873–937.

  • 28. Jaffe, A.B., R.G. Newell, og R.N. Stavins, A tale of two market failures: Technology and environmental policy. Ecological economics, 2005. 54(2-3): p. 164–174.

  • 29. World Bank Group, State and Trends of Carbon Pricing 2020. 2020: Washington DC.

  • 30. IEA. Energy subsidies. 2020 [2020 12. September]; https://www.iea.org/topics/energy-subsidies.

  • 31. Stiglitz, J. og N. Stern, Report of the High-Level Commission on Carbon Prices. 2017, Carbon Pricing Leadership Coalition: Washington DC.

  • 32. Parry, I., Putting a price on pollution. FINANCE & DEVELOPMENT, 2019. 56(4): p. 16–19.

  • 33. Malen, J. og A.A. Marcus, Environmental Externalities and Weak Appropriability: Influences on Firm Pollution Reduction Technology Development. Business & Society, 2019. 58(8): p. 1599–1633.

  • 34. Arrow, K., Economic Welfare and the Allocation of Resources for Invention, in The Rate and Direction of Inventive Activity: Economic and Social Factors, Universities-National Bureau Committee for Economic Research, Editor. 1962, Princeton University Press. p. 609 – 626.

  • 35. Aghion, P. og X. Jaravel, Knowledge Spillovers, Innovation and Growth. The Economic Journal, 2015. 125(583): p. 533–573.

  • 36. Arrow, K.J., Optimal Capital Policy with Irreversible Investment, in Value, Capital and Growth: Papers in Honour of Sir John Hicks, J.N. Wolfe, Editor. 1968, Edinburgh Univ. Press: Edinburgh.

  • 37. Wright, T.P., Factors Affecting the Cost of Airplanes. Journal of the Auronautical Sciences, 1936. 3: p. 122–128.

  • 38. Malerba, F., Learning by Firms and Incremental Technical Change. The Economic Journal, 1992. 102: p. 845–859.

  • 39. McDonald, A. og L. Schattenholzer, Learning Rates for Energy Technologies. Energy Policy, 2001. 29: p. 255–261.

  • 40. Löschel, A., Technological change in economic models of environmental policy: a survey. Ecological economics, 2002. 43: p. 105–126.

  • 41. DNV GL, Potential for reduced costs for carbon capture, transport and storage value chains (CCS). 2019. p. 61.

  • 42. Quale, S. og V. Rohling, The European Carbon dioxide Capture and Storage Laboratory Infrastructure (ECCSEL). Green Energy & Environment, 2016. 1(3): p. 180–194.

  • 43. US Department of Energy og O.-o. energidepartementet, Memorandum of Understanding Between The Department of Energy of the United States of America and the Royal Ministry of Petroleum and Energy of the Kingdom of Norway on Collaboration in the Field of Energy Research, Development and Demonstration. 2004: Amsterdam.

  • 44. Olje- og energidepartementet, Konseptvalgutredning – Demonstrasjon av fullskala fangst, transport og lagring av CO2. 2016.

  • 45. Atkins og Oslo Economics, Kvalitetssikring (KS1) av KVU om demonstrasjon av fullskala fangst, transport og lagring av CO2. 2016.

  • 46. EFTA Surveillance Authority, EFTA SURVEILLANCE AUTHORITY DECISION of 16 March 2017 on the financing of «Concept and FEED Studies» on full-scale CO2 capture and storage (Norway), in 045/17/COL. 2017, ESA.

  • 47. Czigler, T., et al. The cement industry is a top source of CO2 emissions, but abatement pressures could prompt efforts to reimagine the business. 2020 [2020 26. august]; https://www.mckinsey.com/industries/chemicals/our-insights/laying-the-foundation-for-zero-carbon-cement.

  • 48. Miljødirektoratet. norskeutslipp.no. 2020 [2020 20. august]; https://www.norskeutslipp.no/no/Diverse/Virksomhet/?CompanyID=5311.

  • 49. Multiconsult, Karbonfangstanlegg Norcem Brevik. 2019, Multiconsult: Oslo.

  • 50. The World Bank. What a Waste: An Updated Look into the Future of Solid Waste Management. 2018 [2020 30. august]; https://www.worldbank.org/en/news/immersive-story/2018/09/20/what-a-waste-an-updated-look-into-the-future-of-solid-waste-management.

  • 51. Fortum Oslo Varme, FEED Study Report DG3 (redacted version). 2019, Fortum Oslo Varme AS: Oslo.

  • 52. DFØ, Gevinstrealisering – planlegging for å hente ut gevinster av offentlige prosjekter. 2014.

  • 53. Gassnova SF, Gevinstrealisering – Fullskalaprosjektet. 2020.

  • 54. EFTA Surveillance Authority, ESA approves Norwegian Full-Scale Carbon Capture and Storage: up to €2.1bn in aid to meet climate goals. 2020, ESA: Brussels.

  • 55. Gassnova SF, Norsk CCS demonstrasjonsprosjekt – Evaluering og rangering av fangstprosjektene ved avsluttet forprosjekt (DG3) – Fortum Oslo Varme og Norcem. 2020, Gassnova SF: Porsgrunn.

  • 56. Atkins og Oslo Economics, Kvalitetssikring (KS2) av tiltak for demonstrasjon av fullskala CO2-håndtering, in Statens prosjektmodell Rapport nummer D102b. 2020.

  • 57. European Commission, A hydrogen strategy for a climate-neutral Europe. 2020: Brussels.

  • 58. Størset, S.Ø., et al., Industrielle muligheter og arbeidsplasser ved CO2-håndtering i Norge. 2018, SINTEF.

  • 59. SF, G., Oppdatert samfunnsøkonomisk analyse av demonstrasjonsprosjekt for fullskala CO2-håndtering. 2020.

  • 60. Riahi, K.e.a., The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implication: An overview. Global Environmental Change, 2017. 42: p. 153–168.

  • 61. SOU 2020:4, Vägen till en klimatpositiv framtid, Miljödepartementet, Editor. 2020: Stockholm.

  • 62. Schumpeter, J.A., The theory of economic development : an inquiry into profits, capital, credit, interest, and the business cycle. Social science classics series. 1983; 1934, New Brunswick, N.J., London: Transaction Publishers.

Til forsida av dokumentet